File size: 1,622 Bytes
f84a947
61966e1
f84a947
 
 
61966e1
 
e80c3a5
f84a947
4572cc2
5245bbd
e80c3a5
4572cc2
 
61966e1
4572cc2
61966e1
 
 
 
4572cc2
 
61966e1
4572cc2
 
 
61966e1
4572cc2
61966e1
4572cc2
 
 
 
 
61966e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5245bbd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
---

# LaBSE
This is a port of the [LaBSE](https://tfhub.dev/google/LaBSE/1) model to PyTorch. It can be used to map 109 languages to a shared vector space.


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/LaBSE')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results



For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/LaBSE)



## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)
```

## Citing & Authors

Have a look at [LaBSE](https://tfhub.dev/google/LaBSE/1) for the respective publication that describes LaBSE.