--- license: mit tags: - text-classification - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: xnli_xlm_r_only_fr results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli config: fr split: train args: fr metrics: - name: Accuracy type: accuracy value: 0.7899598393574297 --- # xnli_xlm_r_only_fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 0.7620 - Accuracy: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.67 | 1.0 | 3068 | 0.5665 | 0.7667 | | 0.5256 | 2.0 | 6136 | 0.5302 | 0.7932 | | 0.4588 | 3.0 | 9204 | 0.5528 | 0.7884 | | 0.4043 | 4.0 | 12272 | 0.5616 | 0.7867 | | 0.3545 | 5.0 | 15340 | 0.5650 | 0.7984 | | 0.3124 | 6.0 | 18408 | 0.6290 | 0.7912 | | 0.275 | 7.0 | 21476 | 0.6616 | 0.7843 | | 0.245 | 8.0 | 24544 | 0.6745 | 0.7932 | | 0.2202 | 9.0 | 27612 | 0.7479 | 0.7900 | | 0.2025 | 10.0 | 30680 | 0.7620 | 0.7900 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1