--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: xnli_m_bert_only_sw results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli config: sw split: train args: sw metrics: - name: Accuracy type: accuracy value: 0.6289156626506024 --- # xnli_m_bert_only_sw This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 1.5193 - Accuracy: 0.6289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8323 | 1.0 | 3068 | 0.8640 | 0.6217 | | 0.7614 | 2.0 | 6136 | 0.7812 | 0.6598 | | 0.6875 | 3.0 | 9204 | 0.8466 | 0.6394 | | 0.6065 | 4.0 | 12272 | 0.8354 | 0.6538 | | 0.5219 | 5.0 | 15340 | 0.8810 | 0.6550 | | 0.4317 | 6.0 | 18408 | 0.9880 | 0.6554 | | 0.3532 | 7.0 | 21476 | 1.1403 | 0.6390 | | 0.2893 | 8.0 | 24544 | 1.1935 | 0.6390 | | 0.2351 | 9.0 | 27612 | 1.3805 | 0.6390 | | 0.1928 | 10.0 | 30680 | 1.5193 | 0.6289 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1