--- license: mit tags: - text-classification - generated_from_trainer datasets: - paws-x metrics: - accuracy model-index: - name: paws_x_xlm_r_only_de results: - task: name: Text Classification type: text-classification dataset: name: paws-x type: paws-x config: de split: train args: de metrics: - name: Accuracy type: accuracy value: 0.87 --- # paws_x_xlm_r_only_de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the paws-x dataset. It achieves the following results on the evaluation set: - Loss: 0.5602 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4751 | 1.0 | 386 | 0.4272 | 0.826 | | 0.2308 | 2.0 | 772 | 0.3728 | 0.8575 | | 0.1753 | 3.0 | 1158 | 0.4369 | 0.845 | | 0.1387 | 4.0 | 1544 | 0.3616 | 0.8645 | | 0.1169 | 5.0 | 1930 | 0.4507 | 0.8635 | | 0.0975 | 6.0 | 2316 | 0.4476 | 0.8595 | | 0.0829 | 7.0 | 2702 | 0.5073 | 0.8675 | | 0.072 | 8.0 | 3088 | 0.5038 | 0.8655 | | 0.0626 | 9.0 | 3474 | 0.5009 | 0.868 | | 0.0562 | 10.0 | 3860 | 0.5602 | 0.87 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1