--- license: apache-2.0 tags: - generated_from_trainer datasets: - fashion_mnist metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: fashion_classification_model results: - task: type: image-classification name: Image Classification dataset: name: fashion_mnist type: fashion_mnist config: fashion_mnist split: train[:5000] args: fashion_mnist metrics: - type: accuracy value: 0.792 name: Accuracy --- # fashion_classification_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fashion_mnist dataset. It achieves the following results on the evaluation set: - Loss: 1.0461 - Accuracy: 0.792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.285 | 0.99 | 62 | 1.2299 | 0.718 | | 1.2002 | 2.0 | 125 | 1.2043 | 0.744 | | 1.0345 | 2.98 | 186 | 1.0461 | 0.792 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3