--- language: - km license: apache-2.0 library_name: transformers tags: - generated_from_trainer datasets: - seanghay/khPOS metrics: - precision - recall - f1 - accuracy widget: - text: គាត់ផឹកទឹកនៅភ្នំពេញ - text: តើលោកស្រីបានសាកសួរទៅគាត់ទេ? - text: នេត្រា មិនដឹងសោះថាអ្នកជាមនុស្ស! - text: លោក វណ្ណ ម៉ូលីវណ្ណ ជាបិតាស្ថាបត្យកម្មដ៏ល្បីល្បាញរបស់ប្រទេសកម្ពុជានៅក្នុងសម័យសង្គមរាស្ត្រនិយម។ pipeline_tag: token-classification base_model: xlm-roberta-base model-index: - name: khmer-pos-roberta-10 results: - task: type: token-classification name: Token Classification dataset: name: kh_pos type: kh_pos config: default split: train args: default metrics: - type: precision value: 0.9511876225757245 name: Precision - type: recall value: 0.9526407682234832 name: Recall - type: f1 value: 0.9519136408243376 name: F1 - type: accuracy value: 0.9735370853522176 name: Accuracy --- # Khmer Part of Speech Tagging with XLM RoBERTa This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [khPOS](https://huggingface.co/datasets/seanghay/khPOS) dataset. It achieves the following results on the evaluation set: - Loss: 0.1063 - Precision: 0.9512 - Recall: 0.9526 - F1: 0.9519 - Accuracy: 0.9735 ## Model description The [original paper](https://arxiv.org/pdf/2103.16801.pdf) achieved 98.15% accuracy while this model achieved only 97.35% which is close. However, this is a multilingual model so it has more tokens than the original paper. ## Intended uses & limitations This model can be used to extract useful information from Khmer text. ## Training and evaluation data train: 90% / test: 10% ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 450 | 0.1347 | 0.9314 | 0.9333 | 0.9324 | 0.9603 | | 0.4834 | 2.0 | 900 | 0.1183 | 0.9407 | 0.9377 | 0.9392 | 0.9653 | | 0.1323 | 3.0 | 1350 | 0.1026 | 0.9484 | 0.9482 | 0.9483 | 0.9699 | | 0.095 | 4.0 | 1800 | 0.0986 | 0.9502 | 0.9490 | 0.9496 | 0.9712 | | 0.0774 | 5.0 | 2250 | 0.0978 | 0.9494 | 0.9491 | 0.9493 | 0.9712 | | 0.0616 | 6.0 | 2700 | 0.0991 | 0.9493 | 0.9507 | 0.9500 | 0.9715 | | 0.0494 | 7.0 | 3150 | 0.0989 | 0.9529 | 0.9540 | 0.9534 | 0.9731 | | 0.0414 | 8.0 | 3600 | 0.1037 | 0.9499 | 0.9501 | 0.9500 | 0.9722 | | 0.0339 | 9.0 | 4050 | 0.1056 | 0.9516 | 0.9517 | 0.9516 | 0.9734 | | 0.029 | 10.0 | 4500 | 0.1063 | 0.9512 | 0.9526 | 0.9519 | 0.9735 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3