--- license: cc-by-4.0 library_name: scvi-tools tags: - biology - genomics - single-cell - model_cls_name:SCANVI - scvi_version:0.20.3 - anndata_version:0.8.0 - modality:rna - tissue:lung - annotated:True --- # Description The single cell lung cancer atlas is a resource integrating more than 1.2 million cells from 309 patients across 29 datasets. # Model properties Many model properties are in the model tags. Some more are listed below. **model_init_params**: ```json { "n_hidden": 128, "n_latent": 10, "n_layers": 2, "dropout_rate": 0.2, "dispersion": "gene", "gene_likelihood": "zinb", "latent_distribution": "normal", "use_layer_norm": "both", "use_batch_norm": "none", "encode_covariates": true } ``` **model_setup_anndata_args**: ```json { "labels_key": "cell_type", "unlabeled_category": "unknown", "layer": null, "batch_key": "sample", "size_factor_key": null, "categorical_covariate_keys": null, "continuous_covariate_keys": null } ``` **model_summary_stats**: | Summary Stat Key | Value | |--------------------------|--------| | n_batch | 505 | | n_cells | 892296 | | n_extra_categorical_covs | 0 | | n_extra_continuous_covs | 0 | | n_labels | 45 | | n_latent_qzm | 10 | | n_latent_qzv | 10 | | n_vars | 6000 | **model_data_registry**: | Registry Key | scvi-tools Location | |-------------------|----------------------------------------| | X | adata.X | | batch | adata.obs['_scvi_batch'] | | labels | adata.obs['_scvi_labels'] | | latent_qzm | adata.obsm['_scanvi_latent_qzm'] | | latent_qzv | adata.obsm['_scanvi_latent_qzv'] | | minify_type | adata.uns['_scvi_adata_minify_type'] | | observed_lib_size | adata.obs['_scanvi_observed_lib_size'] | **model_parent_module**: scvi.model **data_is_minified**: True # Training data This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub. Training data url: https://zenodo.org/record/7227571/files/core_atlas_scanvi_model.tar.gz # Training code This is an optional link to the code used to train the model. Training code url: https://github.com/icbi-lab/luca # References High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. S Salcher, G Sturm, L Horvath, G Untergasser, C Kuempers, G Fotakis, E Panizzolo, A Martowicz, M Trebo, G Pall, G Gamerith, M Sykora, F Augustin, K Schmitz, F Finotello, D Rieder, S Perner, S Sopper, D Wolf, A Pircher, Z Trajanoski. Cancer Cell. 2022; 40 (12): 1503-1520.e8. https: //doi.org/10.1016/j.ccell.2022.10.008