--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: attribute_0: - material_7 - material_7 - material_7 attribute_1: - material_8 - material_8 - material_6 attribute_2: - 5 - 5 - 6 attribute_3: - 8 - 8 - 9 loading: - 154.02 - 108.73 - 99.84 measurement_0: - 14 - 4 - 6 measurement_1: - 6 - 7 - 7 measurement_10: - 16.637 - 16.207 - 17.17 measurement_11: - 20.719 - 20.058 - 20.858 measurement_12: - 12.824 - 11.898 - 10.968 measurement_13: - 16.067 - 13.871 - 16.448 measurement_14: - 15.181 - 14.266 - 15.6 measurement_15: - 18.546 - 15.734 - 14.637 measurement_16: - 19.402 - 16.886 - 13.86 measurement_17: - 643.086 - 642.533 - 673.545 measurement_2: - 6 - 9 - 6 measurement_3: - 19.532 - 18.128 - NaN measurement_4: - 11.017 - 11.866 - 10.064 measurement_5: - 15.639 - 17.891 - 16.287 measurement_6: - 16.709 - 20.302 - 17.445 measurement_7: - 10.057 - NaN - 12.117 measurement_8: - 20.201 - 18.148 - 20.659 measurement_9: - 11.106 - 10.221 - 11.999 product_code: - C - C - E --- # Model description This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters.
Click to expand | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(), 'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best |
### Model Plot The model plot is below.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
Please rerun this cell to show the HTML repr or trust the notebook.
# Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 0.7888 | | f1 score | 0.7888 | # How to Get Started with the Model Use the code below to get started with the model.
Click to expand ```python import pickle with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: clf = pickle.load(file) ```
# Model Card Authors This model card is written by following authors: huggingface # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` Tree Plot ![Tree Plot](tree.png) Confusion Matrix ![Confusion Matrix](confusion_matrix.png)