--- license: apache-2.0 language: - en tags: - diffusion model - stable diffusion - SCEdit - Scepter - Scepter studio - Controllable - ControlNet - Lora ---

🪄SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing

Zeyinzi Jiang · Chaojie Mao · Yulin Pan · Zhen Han · Jingfeng Zhang

Paper PDF Project Page
Alibaba Group

SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion. #### Code Example ```shell git clone https://github.com/modelscope/scepter.git cd scepter PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/SCEdit/t2i_sdxl_1024_sce.yaml ``` To prepare the training dataset. ```python # pip install modelscope from modelscope.msdatasets import MsDataset ms_train_dataset = MsDataset.load('style_custom_dataset', namespace='damo', subset_name='3D', split='train_short') print(next(iter(ms_train_dataset))) ``` ## BibTeX ```bibtex @article{jiang2023scedit, title = {SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing}, author = {Jiang, Zeyinzi and Mao, Chaojie and Pan, Yulin and Han, Zhen and Zhang, Jingfeng}, year = {2023}, journal = {arXiv preprint arXiv:2312.11392} } ```