---
library_name: stable-baselines3
tags:
- ReacherBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: TQC
results:
- metrics:
- type: mean_reward
value: 20.27 +/- 10.54
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ReacherBulletEnv-v0
type: ReacherBulletEnv-v0
---
# **TQC** Agent playing **ReacherBulletEnv-v0**
This is a trained model of a **TQC** agent playing **ReacherBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env ReacherBulletEnv-v0 -orga sb3 -f logs/
python enjoy.py --algo tqc --env ReacherBulletEnv-v0 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo tqc --env ReacherBulletEnv-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo tqc --env ReacherBulletEnv-v0 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 256),
('buffer_size', 300000),
('ent_coef', 'auto'),
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
('gamma', 0.98),
('gradient_steps', 64),
('learning_rate', 0.00073),
('learning_starts', 10000),
('n_timesteps', 300000.0),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
('tau', 0.02),
('train_freq', 64),
('use_sde', True),
('normalize', False)])
```