---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: QRDQN
results:
- metrics:
- type: mean_reward
value: 61.43 +/- 184.22
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **QRDQN** Agent playing **LunarLander-v2**
This is a trained model of a **QRDQN** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo qrdqn --env LunarLander-v2 -orga sb3 -f logs/
python enjoy.py --algo qrdqn --env LunarLander-v2 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo qrdqn --env LunarLander-v2 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo qrdqn --env LunarLander-v2 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 128),
('buffer_size', 100000),
('exploration_final_eps', 0.18),
('exploration_fraction', 0.24),
('gamma', 0.995),
('gradient_steps', -1),
('learning_rate', 'lin_1.5e-3'),
('learning_starts', 10000),
('n_timesteps', 100000.0),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(net_arch=[256, 256], n_quantiles=170)'),
('target_update_interval', 1),
('train_freq', 256),
('normalize', False)])
```