---
library_name: stable-baselines3
tags:
- Hopper-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 2410.11 +/- 9.86
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Hopper-v3
type: Hopper-v3
---
# **PPO** Agent playing **Hopper-v3**
This is a trained model of a **PPO** agent playing **Hopper-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env Hopper-v3 -orga sb3 -f logs/
python enjoy.py --algo ppo --env Hopper-v3 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ppo --env Hopper-v3 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env Hopper-v3 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('clip_range', 0.2),
('ent_coef', 0.00229519),
('gae_lambda', 0.99),
('gamma', 0.999),
('learning_rate', 9.80828e-05),
('max_grad_norm', 0.7),
('n_envs', 1),
('n_epochs', 5),
('n_steps', 512),
('n_timesteps', 1000000.0),
('normalize', True),
('policy', 'MlpPolicy'),
('policy_kwargs',
'dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
'net_arch=[dict(pi=[256, 256], vf=[256, 256])] )'),
('vf_coef', 0.835671),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
```