--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/ python enjoy.py --algo ppo --env CartPole-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env CartPole-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.2'), ('ent_coef', 0.0), ('gae_lambda', 0.8), ('gamma', 0.98), ('learning_rate', 'lin_0.001'), ('n_envs', 8), ('n_epochs', 20), ('n_steps', 32), ('n_timesteps', 100000.0), ('policy', 'MlpPolicy'), ('normalize', False)]) ```