---
library_name: stable-baselines3
tags:
- CartPole-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
---
# **PPO** Agent playing **CartPole-v1**
This is a trained model of a **PPO** agent playing **CartPole-v1**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/
python enjoy.py --algo ppo --env CartPole-v1 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ppo --env CartPole-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 256),
('clip_range', 'lin_0.2'),
('ent_coef', 0.0),
('gae_lambda', 0.8),
('gamma', 0.98),
('learning_rate', 'lin_0.001'),
('n_envs', 8),
('n_epochs', 20),
('n_steps', 32),
('n_timesteps', 100000.0),
('policy', 'MlpPolicy'),
('normalize', False)])
```