from .torch_core import * from .basic_train import Learner,LearnerCallback from torch.nn.parallel import DistributedDataParallel, DataParallel from torch.utils.data.distributed import DistributedSampler from fastai.text import TextLMDataBunch __all__ = ['DistributedRecorder', 'DistributedTrainer', 'read_metrics', 'setup_distrib'] def rnn_reset(self): if hasattr(self.module, 'reset'): self.module.reset() DistributedDataParallel.reset = rnn_reset class ParallelTrainer(LearnerCallback): _order = -20 def on_train_begin(self, **kwargs): self.learn.model = DataParallel(self.learn.model) def on_train_end (self, **kwargs): self.learn.model = self.learn.model.module class DistributedTrainer(LearnerCallback): _order = -20 # Needs to run before the recorder def __init__(self, learn:Learner, cuda_id:int=0): super().__init__(learn) self.cuda_id,self.train_sampler = cuda_id,None def _change_dl(self, dl, shuffle): old_dl = dl sampler = OurDistributedSampler(dl.dataset, shuffle=shuffle) new_dl = dl.new(shuffle=False, sampler=sampler) return old_dl,new_dl,sampler def on_train_begin(self, **kwargs): self.learn.model = DistributedDataParallel(self.model, device_ids=[self.cuda_id], output_device=self.cuda_id) shuffle = self.data.train_dl.init_kwargs['shuffle'] if hasattr(self.data.train_dl, 'init_kwargs') else True self.old_train_dl,self.data.train_dl,self.train_sampler = self._change_dl(self.data.train_dl, shuffle) if hasattr(self.data, 'valid_dl') and self.data.valid_dl is not None: self.old_valid_dl,self.data.valid_dl,self.valid_sampler = self._change_dl(self.data.valid_dl, shuffle) self.rank = rank_distrib() self.recorder.silent = (self.rank != 0) def on_epoch_begin(self, epoch, **kwargs): self.train_sampler.set_epoch(epoch) def on_train_end(self, **kwargs): self.learn.model = self.learn.model.module self.learn.data.train_dl = self.old_train_dl if hasattr(self.learn.data, 'valid_dl') and self.learn.data.valid_dl is not None: self.learn.data.valid_dl = self.old_valid_dl class DistributedRecorder(LearnerCallback): def __init__(self, learn:Learner, cuda_id:int=0, cache_dir:PathOrStr='tmp'): super().__init__(learn) self.cuda_id,self.cache_dir = cuda_id,cache_dir def on_train_begin(self, **kwargs): os.makedirs(self.learn.path/self.cache_dir, exist_ok=True) def on_epoch_end(self, **kwargs): self.save_stats() def on_train_end(self, **kwargs): self.save_stats() def save_stats(self): cache_path,recorder = self.learn.path/self.cache_dir,self.learn.recorder np.save(cache_path/f'losses_{self.cuda_id}', np.array(recorder.losses)) stats = np.array([[v] + m for v,m in zip(recorder.val_losses,recorder.metrics)]) np.save(cache_path/f'metrics_{self.cuda_id}', stats) def _learner_parallel(learn:Learner): "Use nn.DataParallel when training and remove when done" if not torch.cuda.is_available(): warnings.warn('CUDA is not available, check your drivers - training will continue on CPU', ResourceWarning) learn.callbacks.append(ParallelTrainer(learn)) return learn def _learner_distributed(learn:Learner, cuda_id:int, cache_dir:PathOrStr='tmp'): "Put `learn` on distributed training with `cuda_id`." learn.callbacks.append(DistributedTrainer(learn, cuda_id)) learn.callbacks.append(DistributedRecorder(learn, cuda_id, cache_dir)) return learn Learner.to_distributed = _learner_distributed Learner.to_parallel = _learner_parallel def read_metrics(cache_path:PathOrStr, n_gpus:int, reduce:bool=True): losses,metrics = [],[] for i in range(n_gpus): losses.append(np.load(cache_path/f'losses_{i}.npy')[None]) metrics.append(np.load(cache_path/f'metrics_{i}.npy')[None]) if reduce: losses,metrics = np.concatenate(losses,0),np.concatenate(metrics,0) return losses.mean(0),metrics.mean(0) return losses,metrics def setup_distrib(gpu:Any=None): if gpu is None: return gpu gpu = int(gpu) torch.cuda.set_device(int(gpu)) if num_distrib() > 1: torch.distributed.init_process_group(backend='nccl', init_method='env://') return gpu class OurDistributedSampler(DistributedSampler): "A sampler for language models with the option to not shuffle." def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle def __iter__(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)