--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: None args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7755 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2322 | 1.0 | 57 | 2.1521 | 0.37 | | 1.7413 | 2.0 | 114 | 1.6606 | 0.47 | | 1.3543 | 3.0 | 171 | 1.2698 | 0.69 | | 0.9436 | 4.0 | 228 | 1.0440 | 0.71 | | 0.7976 | 5.0 | 285 | 0.8338 | 0.79 | | 0.6615 | 6.0 | 342 | 0.6933 | 0.84 | | 0.5743 | 7.0 | 399 | 0.6180 | 0.84 | | 0.4349 | 8.0 | 456 | 0.5931 | 0.84 | | 0.2949 | 9.0 | 513 | 0.5794 | 0.85 | | 0.2274 | 10.0 | 570 | 0.5901 | 0.84 | | 0.1067 | 11.0 | 627 | 0.6496 | 0.81 | | 0.104 | 12.0 | 684 | 0.6921 | 0.82 | | 0.0781 | 13.0 | 741 | 0.6653 | 0.83 | | 0.0245 | 14.0 | 798 | 0.6621 | 0.84 | | 0.0144 | 15.0 | 855 | 0.7015 | 0.82 | | 0.0104 | 16.0 | 912 | 0.7109 | 0.85 | | 0.007 | 17.0 | 969 | 0.7472 | 0.84 | | 0.0163 | 18.0 | 1026 | 0.7603 | 0.86 | | 0.0039 | 19.0 | 1083 | 0.7710 | 0.85 | | 0.0035 | 20.0 | 1140 | 0.7755 | 0.84 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1