--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9795191451469278 --- # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1312 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9594 | 1.0 | 70 | 3.8779 | 0.6189 | | 3.0869 | 1.99 | 140 | 3.0415 | 0.8549 | | 2.471 | 2.99 | 210 | 2.4433 | 0.9270 | | 2.0406 | 4.0 | 281 | 2.0261 | 0.9501 | | 1.7238 | 5.0 | 351 | 1.7346 | 0.9581 | | 1.4513 | 5.99 | 421 | 1.4902 | 0.9671 | | 1.3131 | 6.99 | 491 | 1.3221 | 0.9786 | | 1.1752 | 8.0 | 562 | 1.2230 | 0.9768 | | 1.1007 | 9.0 | 632 | 1.1619 | 0.9795 | | 1.0682 | 9.96 | 700 | 1.1312 | 0.9795 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3