--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - OUTCOMESAI/medical_speech_corpus metrics: - wer model-index: - name: Whisper Large V3 Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OUTCOMESAI/medical_speech_corpus en type: OUTCOMESAI/medical_speech_corpus metrics: - name: Wer type: wer value: 3.2635854592980795 --- # Whisper Large V3 Medical This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the OUTCOMESAI/medical_speech_corpus en dataset. It achieves the following results on the evaluation set: - Loss: 0.1453 - Wer: 3.2636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2439 | 0.1530 | 200 | 0.2935 | 4.5078 | | 3.3374 | 0.3060 | 400 | 0.2734 | 4.6961 | | 3.0833 | 0.4591 | 600 | 0.2673 | 4.2733 | | 1.8243 | 0.6121 | 800 | 0.2681 | 4.4373 | | 1.1288 | 0.7651 | 1000 | 0.2549 | 4.2771 | | 0.8199 | 0.9181 | 1200 | 0.2412 | 4.2041 | | 0.681 | 1.0712 | 1400 | 0.2311 | 4.1054 | | 0.5798 | 1.2242 | 1600 | 0.2192 | 4.0093 | | 0.5233 | 1.3772 | 1800 | 0.2072 | 3.8927 | | 0.463 | 1.5302 | 2000 | 0.1992 | 3.8197 | | 0.428 | 1.6832 | 2200 | 0.1951 | 3.7748 | | 0.3944 | 1.8363 | 2400 | 0.1866 | 3.6775 | | 0.3682 | 1.9893 | 2600 | 0.1792 | 3.6044 | | 0.3543 | 2.1423 | 2800 | 0.1725 | 3.5301 | | 0.3368 | 2.2953 | 3000 | 0.1714 | 3.4904 | | 0.3136 | 2.4484 | 3200 | 0.1648 | 3.4571 | | 0.3121 | 2.6014 | 3400 | 0.1604 | 3.4238 | | 0.2959 | 2.7544 | 3600 | 0.1561 | 3.3956 | | 0.2912 | 2.9074 | 3800 | 0.1538 | 3.3738 | | 0.2767 | 3.0604 | 4000 | 0.1511 | 3.3456 | | 0.2848 | 3.2135 | 4200 | 0.1487 | 3.3200 | | 0.274 | 3.3665 | 4400 | 0.1475 | 3.2841 | | 0.2694 | 3.5195 | 4600 | 0.1464 | 3.2828 | | 0.2731 | 3.6725 | 4800 | 0.1455 | 3.2687 | | 0.2677 | 3.8256 | 5000 | 0.1453 | 3.2636 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 3.1.1.dev0 - Tokenizers 0.21.0