satyrical commited on
Commit
0f12e70
1 Parent(s): 952f760

commit trained model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.92 +/- 13.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d17de4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d17de550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d17de5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d17de670>", "_build": "<function ActorCriticPolicy._build at 0x7fd9d17de700>", "forward": "<function ActorCriticPolicy.forward at 0x7fd9d17de790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd9d17de820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d17de8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd9d17de940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d17de9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d17dea60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d17deaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd9d17ddb40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678654869242299439, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMb3DubFbM/MSsuP7aGBr+40v67r84dvgAAAAAAAAAAAE/RPDa4PrxfHCe7oaydPLjjqz3f4IC9AACAPwAAgD8z0866f6K0P0SwI77TaFI8n47wOsVPFD0AAAAAAAAAAM220D3Eywg/dbAPPjQchL531Ko9rLKjuwAAAAAAAAAAALo+vIUribmlmVE4tybHst3Jt7uFj3i3AACAPwAAgD+a0tM9Kb8mP8Ll6zy5ZKG+lwKpPehQybsAAAAAAAAAAM2QM72agaw/2qciv16iz74uoBQ8izlwvQAAAAAAAAAAgBDavVJs47sVyg+8oTyxPKRSNz3ewJO9AACAPwAAAAANt7C9zqmbP7ryBT4PZJW+2H7UvfILcD0AAAAAAAAAAJqqgDwSu9U8assYvpslCL6mOag8UPxcPQAAAAAAAAAAM2/7u/CbxD4kmTA9EwdrvgaHAz090DM9AAAAAAAAAAAg/QU+BZcPPvKvOr4HTla+vYdyPO5unT0AAAAAAAAAAE3x5D1KOjg+pqNtPH3uk7747ak9AgjJvQAAAAAAAAAAAOeiPClVbbxSSCS+D4K3vS52zDuXYks9AACAPwAAgD8zAAo9Kvu1PzLedD63Xg6+oKjGPBqtCT0AAAAAAAAAAEMFhL5biU8/rZ5YPe0HbL4AYzG+xagUPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3ZbIBefkb0CUhpRSlIwBbJRNXQGMAXSUR0Chpsf+S8radX2UKGgGaAloD0MIPwJ/+PlDcECUhpRSlGgVTWoBaBZHQKGm4V1Oj7B1fZQoaAZoCWgPQwgGu2HbIuxxQJSGlFKUaBVNiwFoFkdAoag7K3d9D3V9lChoBmgJaA9DCIgvE0VI9XBAlIaUUpRoFU00AWgWR0ChqFn+AEt/dX2UKGgGaAloD0MIpPyk2qe4bkCUhpRSlGgVTYkBaBZHQKGo98l5WzZ1fZQoaAZoCWgPQwhz9zk+GkFxQJSGlFKUaBVNbwFoFkdAobd2MMqjJ3V9lChoBmgJaA9DCLb2PlXFInFAlIaUUpRoFU1XAWgWR0Cht+HGsFMadX2UKGgGaAloD0MII6DCEaRxbUCUhpRSlGgVTV8BaBZHQKG47RxcVxl1fZQoaAZoCWgPQwiUZ14OO0pyQJSGlFKUaBVNbgFoFkdAobnlv/BFeHV9lChoBmgJaA9DCPQau0R1B21AlIaUUpRoFU1fAWgWR0Chufditq59dX2UKGgGaAloD0MI7WKa6d4eckCUhpRSlGgVTQ4BaBZHQKG6E/8EV351fZQoaAZoCWgPQwhl4lZBzDFyQJSGlFKUaBVNgQFoFkdAoboiSPluFnV9lChoBmgJaA9DCH78pUV9HXFAlIaUUpRoFU0zAWgWR0ChumA3974SdX2UKGgGaAloD0MIOzdtxmmoPECUhpRSlGgVTTUBaBZHQKG6ZBqsU7F1fZQoaAZoCWgPQwiyuWqeIxBwQJSGlFKUaBVNgAFoFkdAobrqtYB/7XV9lChoBmgJaA9DCBVSflKtFnJAlIaUUpRoFU1iAWgWR0ChuxsYMvytdX2UKGgGaAloD0MITfVk/tFtcUCUhpRSlGgVTVsBaBZHQKG7RApKBd51fZQoaAZoCWgPQwjG+DB72bluQJSGlFKUaBVNMwFoFkdAobvwFkhA4XV9lChoBmgJaA9DCKFMo8lF4nFAlIaUUpRoFU1CAWgWR0ChvElJHy3DdX2UKGgGaAloD0MITYQNTy9fcUCUhpRSlGgVTUcBaBZHQKG94I/JNj91fZQoaAZoCWgPQwitMH2vIWdxQJSGlFKUaBVNcAFoFkdAob5HZsbednV9lChoBmgJaA9DCKpjldIzzS7AlIaUUpRoFU0FAWgWR0Chvs74SHuadX2UKGgGaAloD0MIOPjCZKqMNECUhpRSlGgVTRgBaBZHQKG/GLkS26V1fZQoaAZoCWgPQwj1vvG1ZxRvQJSGlFKUaBVNYQFoFkdAob+x48lolHV9lChoBmgJaA9DCKKakqzDU29AlIaUUpRoFU3HAWgWR0Chv739R77bdX2UKGgGaAloD0MIYLGGi9znN0CUhpRSlGgVS/VoFkdAob/L8vVVgnV9lChoBmgJaA9DCL3iqUcaK2JAlIaUUpRoFU3oA2gWR0Chv+g/s3Q2dX2UKGgGaAloD0MIdO/hkmN0a0CUhpRSlGgVTU0BaBZHQKHAVcJtzjp1fZQoaAZoCWgPQwi0d0ZbVQBwQJSGlFKUaBVNYQFoFkdAocBy94/u9nV9lChoBmgJaA9DCH2x9+IL9HFAlIaUUpRoFU1TAWgWR0ChwKQPy08edX2UKGgGaAloD0MIhIJStHLHNkCUhpRSlGgVTQcBaBZHQKHA7kS26TZ1fZQoaAZoCWgPQwgJ3pBGhUJtQJSGlFKUaBVNbAFoFkdAocEEH4XXRXV9lChoBmgJaA9DCHsxlBNtonFAlIaUUpRoFU1ZAWgWR0ChwTg9eQdTdX2UKGgGaAloD0MIxxFr8akibECUhpRSlGgVTU0BaBZHQKHBTeqrBCV1fZQoaAZoCWgPQwjAIypU9xtwQJSGlFKUaBVNawFoFkdAocKiQq7ROXV9lChoBmgJaA9DCNgQHJexQHJAlIaUUpRoFU0fAWgWR0ChwsjoZAIIdX2UKGgGaAloD0MIIH7+e/C+cUCUhpRSlGgVTWwBaBZHQKHEx80k4WF1fZQoaAZoCWgPQwghAg6hStZwQJSGlFKUaBVNMAFoFkdAocTkl1KXfXV9lChoBmgJaA9DCJombD+ZNWxAlIaUUpRoFU1sAWgWR0ChxVfk3juKdX2UKGgGaAloD0MIICdMGM0hbECUhpRSlGgVTVABaBZHQKHFm3uNPxh1fZQoaAZoCWgPQwj76NSVD21yQJSGlFKUaBVNMQFoFkdAocWzKxLTQXV9lChoBmgJaA9DCGQfZFmwq29AlIaUUpRoFU13AWgWR0ChxeiGetjkdX2UKGgGaAloD0MIIeo+ACmQbECUhpRSlGgVTVoBaBZHQKHF+aTfR/p1fZQoaAZoCWgPQwhpdAexczBxQJSGlFKUaBVNKgFoFkdAocYF6w+t83V9lChoBmgJaA9DCP3YJD/iNnBAlIaUUpRoFU0tAWgWR0ChxnJd8iOedX2UKGgGaAloD0MID37iAPo7bUCUhpRSlGgVTXABaBZHQKHGfH09QoF1fZQoaAZoCWgPQwjV7ewrDyISQJSGlFKUaBVNGwFoFkdAocaVwR5C4XV9lChoBmgJaA9DCIE9JlLarnBAlIaUUpRoFU2FAWgWR0ChyD943WFwdX2UKGgGaAloD0MIv30dOOcIbkCUhpRSlGgVTccBaBZHQKHJOE0SAYp1fZQoaAZoCWgPQwgUIuAQ6pNxQJSGlFKUaBVNYwFoFkdAocmULpiZv3V9lChoBmgJaA9DCAowLH/+nXBAlIaUUpRoFU1dAWgWR0ChyaVzZHurdX2UKGgGaAloD0MI+ie4WJFIcUCUhpRSlGgVTVkBaBZHQKHcu6kIomZ1fZQoaAZoCWgPQwi0klZ8Q5VtQJSGlFKUaBVNSgFoFkdAod0FxhlUZXV9lChoBmgJaA9DCOz4LxCECW9AlIaUUpRoFU1BAWgWR0Ch3T/pdKNAdX2UKGgGaAloD0MIY0Si0LKWcECUhpRSlGgVTWkBaBZHQKHddhScbzd1fZQoaAZoCWgPQwiGcMyy58lwQJSGlFKUaBVNQgFoFkdAod2v8qFyrHV9lChoBmgJaA9DCLudfeWBFnFAlIaUUpRoFU0xAWgWR0Ch3j6E8JUpdX2UKGgGaAloD0MIYoVbPpIpcUCUhpRSlGgVTTwBaBZHQKHeS7aqS5l1fZQoaAZoCWgPQwgLDi+ISF1sQJSGlFKUaBVNPgFoFkdAod5wBaLXMHV9lChoBmgJaA9DCCGunL2zkHBAlIaUUpRoFU12AWgWR0Ch3sAKnei0dX2UKGgGaAloD0MImnecoiNabUCUhpRSlGgVTWUBaBZHQKHeyE25xzd1fZQoaAZoCWgPQwh3K0t0lsRsQJSGlFKUaBVNjAFoFkdAod99EG7jDXV9lChoBmgJaA9DCOoihbJwqXBAlIaUUpRoFU06AWgWR0Ch4EB/y5I6dX2UKGgGaAloD0MIUaBP5EkAckCUhpRSlGgVTVYBaBZHQKHho7q6e5F1fZQoaAZoCWgPQwgA5IQJo4E2QJSGlFKUaBVL82gWR0Ch4fPT5O8DdX2UKGgGaAloD0MI/+vctNnOcUCUhpRSlGgVTVoBaBZHQKHiGqnWJ791fZQoaAZoCWgPQwhWuOUjKS5vQJSGlFKUaBVNnQFoFkdAoeOz2rXDnHV9lChoBmgJaA9DCJlnJa14ZXFAlIaUUpRoFU0aAWgWR0Ch49eWnjyXdX2UKGgGaAloD0MIBac+kLxGbECUhpRSlGgVTS8BaBZHQKHj4kl/pdN1fZQoaAZoCWgPQwiYpghw+oFuQJSGlFKUaBVNUQFoFkdAoeRwzabnYHV9lChoBmgJaA9DCDQw8rKmEXJAlIaUUpRoFU01AWgWR0Ch5HoL5RCQdX2UKGgGaAloD0MIr8xbdZ28bECUhpRSlGgVTVoBaBZHQKHkgSFoL5R1fZQoaAZoCWgPQwhMUplijiptQJSGlFKUaBVNbgFoFkdAoeS9olD4QHV9lChoBmgJaA9DCCNpN/qYcHBAlIaUUpRoFU1DAWgWR0Ch5O1UuL75dX2UKGgGaAloD0MIlPjcCfbJWkCUhpRSlGgVTegDaBZHQKHlHA7gbZR1fZQoaAZoCWgPQwhjC0EOyrJwQJSGlFKUaBVNNAFoFkdAoeVABLf1pXV9lChoBmgJaA9DCHqmlxjLJG9AlIaUUpRoFU2AAWgWR0Ch5ZAk9lmOdX2UKGgGaAloD0MIiX0CKIaGcUCUhpRSlGgVTW8BaBZHQKHlmeuFHrh1fZQoaAZoCWgPQwiILqhvWXJyQJSGlFKUaBVNTQFoFkdAoeZTqD9OynV9lChoBmgJaA9DCKuSyD7IPnJAlIaUUpRoFU0lAWgWR0Ch5yHJDE3sdX2UKGgGaAloD0MIYaku4OU2ckCUhpRSlGgVTWoBaBZHQKHoIYSg5BF1fZQoaAZoCWgPQwgbg04InYttQJSGlFKUaBVNVwFoFkdAoegxZbILgHV9lChoBmgJaA9DCIp3gCdtpHBAlIaUUpRoFU0wAWgWR0Ch6Mpw84gidX2UKGgGaAloD0MIYtnMIalWbUCUhpRSlGgVTUQBaBZHQKHpa13MY/F1fZQoaAZoCWgPQwiyoDAok7VxQJSGlFKUaBVNLQFoFkdAoemREroW6HV9lChoBmgJaA9DCOQR3EgZTHFAlIaUUpRoFU0mAWgWR0Ch6f8ghbGFdX2UKGgGaAloD0MIsK4K1KIJcUCUhpRSlGgVTU8BaBZHQKHqQhnrY5F1fZQoaAZoCWgPQwjSbvQx34lwQJSGlFKUaBVNTQFoFkdAoepIpKBd2XV9lChoBmgJaA9DCPTeGALAIHBAlIaUUpRoFU13AWgWR0Ch6niqyWzGdX2UKGgGaAloD0MIU1ipoCK5cECUhpRSlGgVTVcBaBZHQKHquzE74i51fZQoaAZoCWgPQwgcRGtF25hxQJSGlFKUaBVNUAFoFkdAoesJjz7MxHV9lChoBmgJaA9DCHgOZajKWnBAlIaUUpRoFU04AWgWR0Ch6ybBfrrxdX2UKGgGaAloD0MIqDl5kUkkcECUhpRSlGgVTTkBaBZHQKHsF5P/JeV1fZQoaAZoCWgPQwjyQ6URMxJvQJSGlFKUaBVNdAFoFkdAoew86RyOrHV9lChoBmgJaA9DCOCcEaW9E29AlIaUUpRoFU3LAWgWR0Ch7ce0w8GLdX2UKGgGaAloD0MIrDjVWtjecECUhpRSlGgVTWUBaBZHQKHuioBq9Gt1fZQoaAZoCWgPQwjxun7BbnJAQJSGlFKUaBVNCwFoFkdAofBAP/aQFXV9lChoBmgJaA9DCPHVjuLcn3JAlIaUUpRoFU1JAWgWR0Ch8Hq2a2F4dX2UKGgGaAloD0MIxciSORbybkCUhpRSlGgVTTMBaBZHQKHwpqW1MM91fZQoaAZoCWgPQwhDPX0EfnVsQJSGlFKUaBVNbgFoFkdAofCn/xUedXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (214 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.92383267420982, "std_reward": 13.496216200491503, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T22:29:37.809712"}
trainedLanderModel1mSteps.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af6057ac9c72bb445829f51f3f72dc36d857b049671aad9e63deeeda8282512
3
+ size 147557
trainedLanderModel1mSteps/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
trainedLanderModel1mSteps/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d17de4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d17de550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d17de5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d17de670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd9d17de700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd9d17de790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd9d17de820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d17de8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd9d17de940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d17de9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d17dea60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d17deaf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd9d17ddb40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678654869242299439,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMb3DubFbM/MSsuP7aGBr+40v67r84dvgAAAAAAAAAAAE/RPDa4PrxfHCe7oaydPLjjqz3f4IC9AACAPwAAgD8z0866f6K0P0SwI77TaFI8n47wOsVPFD0AAAAAAAAAAM220D3Eywg/dbAPPjQchL531Ko9rLKjuwAAAAAAAAAAALo+vIUribmlmVE4tybHst3Jt7uFj3i3AACAPwAAgD+a0tM9Kb8mP8Ll6zy5ZKG+lwKpPehQybsAAAAAAAAAAM2QM72agaw/2qciv16iz74uoBQ8izlwvQAAAAAAAAAAgBDavVJs47sVyg+8oTyxPKRSNz3ewJO9AACAPwAAAAANt7C9zqmbP7ryBT4PZJW+2H7UvfILcD0AAAAAAAAAAJqqgDwSu9U8assYvpslCL6mOag8UPxcPQAAAAAAAAAAM2/7u/CbxD4kmTA9EwdrvgaHAz090DM9AAAAAAAAAAAg/QU+BZcPPvKvOr4HTla+vYdyPO5unT0AAAAAAAAAAE3x5D1KOjg+pqNtPH3uk7747ak9AgjJvQAAAAAAAAAAAOeiPClVbbxSSCS+D4K3vS52zDuXYks9AACAPwAAgD8zAAo9Kvu1PzLedD63Xg6+oKjGPBqtCT0AAAAAAAAAAEMFhL5biU8/rZ5YPe0HbL4AYzG+xagUPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3ZbIBefkb0CUhpRSlIwBbJRNXQGMAXSUR0Chpsf+S8radX2UKGgGaAloD0MIPwJ/+PlDcECUhpRSlGgVTWoBaBZHQKGm4V1Oj7B1fZQoaAZoCWgPQwgGu2HbIuxxQJSGlFKUaBVNiwFoFkdAoag7K3d9D3V9lChoBmgJaA9DCIgvE0VI9XBAlIaUUpRoFU00AWgWR0ChqFn+AEt/dX2UKGgGaAloD0MIpPyk2qe4bkCUhpRSlGgVTYkBaBZHQKGo98l5WzZ1fZQoaAZoCWgPQwhz9zk+GkFxQJSGlFKUaBVNbwFoFkdAobd2MMqjJ3V9lChoBmgJaA9DCLb2PlXFInFAlIaUUpRoFU1XAWgWR0Cht+HGsFMadX2UKGgGaAloD0MII6DCEaRxbUCUhpRSlGgVTV8BaBZHQKG47RxcVxl1fZQoaAZoCWgPQwiUZ14OO0pyQJSGlFKUaBVNbgFoFkdAobnlv/BFeHV9lChoBmgJaA9DCPQau0R1B21AlIaUUpRoFU1fAWgWR0Chufditq59dX2UKGgGaAloD0MI7WKa6d4eckCUhpRSlGgVTQ4BaBZHQKG6E/8EV351fZQoaAZoCWgPQwhl4lZBzDFyQJSGlFKUaBVNgQFoFkdAoboiSPluFnV9lChoBmgJaA9DCH78pUV9HXFAlIaUUpRoFU0zAWgWR0ChumA3974SdX2UKGgGaAloD0MIOzdtxmmoPECUhpRSlGgVTTUBaBZHQKG6ZBqsU7F1fZQoaAZoCWgPQwiyuWqeIxBwQJSGlFKUaBVNgAFoFkdAobrqtYB/7XV9lChoBmgJaA9DCBVSflKtFnJAlIaUUpRoFU1iAWgWR0ChuxsYMvytdX2UKGgGaAloD0MITfVk/tFtcUCUhpRSlGgVTVsBaBZHQKG7RApKBd51fZQoaAZoCWgPQwjG+DB72bluQJSGlFKUaBVNMwFoFkdAobvwFkhA4XV9lChoBmgJaA9DCKFMo8lF4nFAlIaUUpRoFU1CAWgWR0ChvElJHy3DdX2UKGgGaAloD0MITYQNTy9fcUCUhpRSlGgVTUcBaBZHQKG94I/JNj91fZQoaAZoCWgPQwitMH2vIWdxQJSGlFKUaBVNcAFoFkdAob5HZsbednV9lChoBmgJaA9DCKpjldIzzS7AlIaUUpRoFU0FAWgWR0Chvs74SHuadX2UKGgGaAloD0MIOPjCZKqMNECUhpRSlGgVTRgBaBZHQKG/GLkS26V1fZQoaAZoCWgPQwj1vvG1ZxRvQJSGlFKUaBVNYQFoFkdAob+x48lolHV9lChoBmgJaA9DCKKakqzDU29AlIaUUpRoFU3HAWgWR0Chv739R77bdX2UKGgGaAloD0MIYLGGi9znN0CUhpRSlGgVS/VoFkdAob/L8vVVgnV9lChoBmgJaA9DCL3iqUcaK2JAlIaUUpRoFU3oA2gWR0Chv+g/s3Q2dX2UKGgGaAloD0MIdO/hkmN0a0CUhpRSlGgVTU0BaBZHQKHAVcJtzjp1fZQoaAZoCWgPQwi0d0ZbVQBwQJSGlFKUaBVNYQFoFkdAocBy94/u9nV9lChoBmgJaA9DCH2x9+IL9HFAlIaUUpRoFU1TAWgWR0ChwKQPy08edX2UKGgGaAloD0MIhIJStHLHNkCUhpRSlGgVTQcBaBZHQKHA7kS26TZ1fZQoaAZoCWgPQwgJ3pBGhUJtQJSGlFKUaBVNbAFoFkdAocEEH4XXRXV9lChoBmgJaA9DCHsxlBNtonFAlIaUUpRoFU1ZAWgWR0ChwTg9eQdTdX2UKGgGaAloD0MIxxFr8akibECUhpRSlGgVTU0BaBZHQKHBTeqrBCV1fZQoaAZoCWgPQwjAIypU9xtwQJSGlFKUaBVNawFoFkdAocKiQq7ROXV9lChoBmgJaA9DCNgQHJexQHJAlIaUUpRoFU0fAWgWR0ChwsjoZAIIdX2UKGgGaAloD0MIIH7+e/C+cUCUhpRSlGgVTWwBaBZHQKHEx80k4WF1fZQoaAZoCWgPQwghAg6hStZwQJSGlFKUaBVNMAFoFkdAocTkl1KXfXV9lChoBmgJaA9DCJombD+ZNWxAlIaUUpRoFU1sAWgWR0ChxVfk3juKdX2UKGgGaAloD0MIICdMGM0hbECUhpRSlGgVTVABaBZHQKHFm3uNPxh1fZQoaAZoCWgPQwj76NSVD21yQJSGlFKUaBVNMQFoFkdAocWzKxLTQXV9lChoBmgJaA9DCGQfZFmwq29AlIaUUpRoFU13AWgWR0ChxeiGetjkdX2UKGgGaAloD0MIIeo+ACmQbECUhpRSlGgVTVoBaBZHQKHF+aTfR/p1fZQoaAZoCWgPQwhpdAexczBxQJSGlFKUaBVNKgFoFkdAocYF6w+t83V9lChoBmgJaA9DCP3YJD/iNnBAlIaUUpRoFU0tAWgWR0ChxnJd8iOedX2UKGgGaAloD0MID37iAPo7bUCUhpRSlGgVTXABaBZHQKHGfH09QoF1fZQoaAZoCWgPQwjV7ewrDyISQJSGlFKUaBVNGwFoFkdAocaVwR5C4XV9lChoBmgJaA9DCIE9JlLarnBAlIaUUpRoFU2FAWgWR0ChyD943WFwdX2UKGgGaAloD0MIv30dOOcIbkCUhpRSlGgVTccBaBZHQKHJOE0SAYp1fZQoaAZoCWgPQwgUIuAQ6pNxQJSGlFKUaBVNYwFoFkdAocmULpiZv3V9lChoBmgJaA9DCAowLH/+nXBAlIaUUpRoFU1dAWgWR0ChyaVzZHurdX2UKGgGaAloD0MI+ie4WJFIcUCUhpRSlGgVTVkBaBZHQKHcu6kIomZ1fZQoaAZoCWgPQwi0klZ8Q5VtQJSGlFKUaBVNSgFoFkdAod0FxhlUZXV9lChoBmgJaA9DCOz4LxCECW9AlIaUUpRoFU1BAWgWR0Ch3T/pdKNAdX2UKGgGaAloD0MIY0Si0LKWcECUhpRSlGgVTWkBaBZHQKHddhScbzd1fZQoaAZoCWgPQwiGcMyy58lwQJSGlFKUaBVNQgFoFkdAod2v8qFyrHV9lChoBmgJaA9DCLudfeWBFnFAlIaUUpRoFU0xAWgWR0Ch3j6E8JUpdX2UKGgGaAloD0MIYoVbPpIpcUCUhpRSlGgVTTwBaBZHQKHeS7aqS5l1fZQoaAZoCWgPQwgLDi+ISF1sQJSGlFKUaBVNPgFoFkdAod5wBaLXMHV9lChoBmgJaA9DCCGunL2zkHBAlIaUUpRoFU12AWgWR0Ch3sAKnei0dX2UKGgGaAloD0MImnecoiNabUCUhpRSlGgVTWUBaBZHQKHeyE25xzd1fZQoaAZoCWgPQwh3K0t0lsRsQJSGlFKUaBVNjAFoFkdAod99EG7jDXV9lChoBmgJaA9DCOoihbJwqXBAlIaUUpRoFU06AWgWR0Ch4EB/y5I6dX2UKGgGaAloD0MIUaBP5EkAckCUhpRSlGgVTVYBaBZHQKHho7q6e5F1fZQoaAZoCWgPQwgA5IQJo4E2QJSGlFKUaBVL82gWR0Ch4fPT5O8DdX2UKGgGaAloD0MI/+vctNnOcUCUhpRSlGgVTVoBaBZHQKHiGqnWJ791fZQoaAZoCWgPQwhWuOUjKS5vQJSGlFKUaBVNnQFoFkdAoeOz2rXDnHV9lChoBmgJaA9DCJlnJa14ZXFAlIaUUpRoFU0aAWgWR0Ch49eWnjyXdX2UKGgGaAloD0MIBac+kLxGbECUhpRSlGgVTS8BaBZHQKHj4kl/pdN1fZQoaAZoCWgPQwiYpghw+oFuQJSGlFKUaBVNUQFoFkdAoeRwzabnYHV9lChoBmgJaA9DCDQw8rKmEXJAlIaUUpRoFU01AWgWR0Ch5HoL5RCQdX2UKGgGaAloD0MIr8xbdZ28bECUhpRSlGgVTVoBaBZHQKHkgSFoL5R1fZQoaAZoCWgPQwhMUplijiptQJSGlFKUaBVNbgFoFkdAoeS9olD4QHV9lChoBmgJaA9DCCNpN/qYcHBAlIaUUpRoFU1DAWgWR0Ch5O1UuL75dX2UKGgGaAloD0MIlPjcCfbJWkCUhpRSlGgVTegDaBZHQKHlHA7gbZR1fZQoaAZoCWgPQwhjC0EOyrJwQJSGlFKUaBVNNAFoFkdAoeVABLf1pXV9lChoBmgJaA9DCHqmlxjLJG9AlIaUUpRoFU2AAWgWR0Ch5ZAk9lmOdX2UKGgGaAloD0MIiX0CKIaGcUCUhpRSlGgVTW8BaBZHQKHlmeuFHrh1fZQoaAZoCWgPQwiILqhvWXJyQJSGlFKUaBVNTQFoFkdAoeZTqD9OynV9lChoBmgJaA9DCKuSyD7IPnJAlIaUUpRoFU0lAWgWR0Ch5yHJDE3sdX2UKGgGaAloD0MIYaku4OU2ckCUhpRSlGgVTWoBaBZHQKHoIYSg5BF1fZQoaAZoCWgPQwgbg04InYttQJSGlFKUaBVNVwFoFkdAoegxZbILgHV9lChoBmgJaA9DCIp3gCdtpHBAlIaUUpRoFU0wAWgWR0Ch6Mpw84gidX2UKGgGaAloD0MIYtnMIalWbUCUhpRSlGgVTUQBaBZHQKHpa13MY/F1fZQoaAZoCWgPQwiyoDAok7VxQJSGlFKUaBVNLQFoFkdAoemREroW6HV9lChoBmgJaA9DCOQR3EgZTHFAlIaUUpRoFU0mAWgWR0Ch6f8ghbGFdX2UKGgGaAloD0MIsK4K1KIJcUCUhpRSlGgVTU8BaBZHQKHqQhnrY5F1fZQoaAZoCWgPQwjSbvQx34lwQJSGlFKUaBVNTQFoFkdAoepIpKBd2XV9lChoBmgJaA9DCPTeGALAIHBAlIaUUpRoFU13AWgWR0Ch6niqyWzGdX2UKGgGaAloD0MIU1ipoCK5cECUhpRSlGgVTVcBaBZHQKHquzE74i51fZQoaAZoCWgPQwgcRGtF25hxQJSGlFKUaBVNUAFoFkdAoesJjz7MxHV9lChoBmgJaA9DCHgOZajKWnBAlIaUUpRoFU04AWgWR0Ch6ybBfrrxdX2UKGgGaAloD0MIqDl5kUkkcECUhpRSlGgVTTkBaBZHQKHsF5P/JeV1fZQoaAZoCWgPQwjyQ6URMxJvQJSGlFKUaBVNdAFoFkdAoew86RyOrHV9lChoBmgJaA9DCOCcEaW9E29AlIaUUpRoFU3LAWgWR0Ch7ce0w8GLdX2UKGgGaAloD0MIrDjVWtjecECUhpRSlGgVTWUBaBZHQKHuioBq9Gt1fZQoaAZoCWgPQwjxun7BbnJAQJSGlFKUaBVNCwFoFkdAofBAP/aQFXV9lChoBmgJaA9DCPHVjuLcn3JAlIaUUpRoFU1JAWgWR0Ch8Hq2a2F4dX2UKGgGaAloD0MIxciSORbybkCUhpRSlGgVTTMBaBZHQKHwpqW1MM91fZQoaAZoCWgPQwhDPX0EfnVsQJSGlFKUaBVNbgFoFkdAofCn/xUedXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 256,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
trainedLanderModel1mSteps/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932b9680af50065bffb4d450b4c723ecf6c77b71be3f2c40aba486a125d28002
3
+ size 88057
trainedLanderModel1mSteps/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd111c467561fd23991ad9ba5ed8fa6b25a5d199e21644725562b4cd03aa5d9
3
+ size 43393
trainedLanderModel1mSteps/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trainedLanderModel1mSteps/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0