--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: hf_phi3_lora results: [] --- [Visualize in Weights & Biases](https://wandb.ai/hmosousa/huggingface/runs/jy8rtirf) # hf_phi3_lora This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.4828 | 0.1489 | 500 | 1.4306 | | 1.4047 | 0.2978 | 1000 | 1.3980 | | 1.3611 | 0.4468 | 1500 | 1.3835 | | 1.3653 | 0.5957 | 2000 | 1.3709 | | 1.3171 | 0.7446 | 2500 | 1.3665 | | 1.3089 | 0.8935 | 3000 | 1.3626 | | 1.312 | 1.0425 | 3500 | 1.3608 | | 1.2771 | 1.1914 | 4000 | 1.3556 | | 1.3031 | 1.3403 | 4500 | 1.3570 | | 1.284 | 1.4892 | 5000 | 1.3508 | | 1.2697 | 1.6382 | 5500 | 1.3477 | | 1.2594 | 1.7871 | 6000 | 1.3453 | | 1.254 | 1.9360 | 6500 | 1.3413 | | 1.2652 | 2.0849 | 7000 | 1.3426 | | 1.2529 | 2.2338 | 7500 | 1.3435 | | 1.2544 | 2.3828 | 8000 | 1.3382 | | 1.2511 | 2.5317 | 8500 | 1.3396 | | 1.2548 | 2.6806 | 9000 | 1.3361 | | 1.2483 | 2.8295 | 9500 | 1.3351 | | 1.2442 | 2.9785 | 10000 | 1.3382 | | 1.2426 | 3.1274 | 10500 | 1.3344 | | 1.2265 | 3.2763 | 11000 | 1.3361 | | 1.2255 | 3.4252 | 11500 | 1.3356 | | 1.2269 | 3.5742 | 12000 | 1.3314 | | 1.2396 | 3.7231 | 12500 | 1.3298 | | 1.2303 | 3.8720 | 13000 | 1.3260 | | 1.2254 | 4.0209 | 13500 | 1.3277 | | 1.2277 | 4.1698 | 14000 | 1.3272 | | 1.2295 | 4.3188 | 14500 | 1.3240 | | 1.2375 | 4.4677 | 15000 | 1.3288 | | 1.2038 | 4.6166 | 15500 | 1.3224 | | 1.2322 | 4.7655 | 16000 | 1.3214 | | 1.2015 | 4.9145 | 16500 | 1.3246 | | 1.208 | 5.0634 | 17000 | 1.3216 | | 1.2248 | 5.2123 | 17500 | 1.3193 | | 1.2155 | 5.3612 | 18000 | 1.3249 | | 1.2194 | 5.5102 | 18500 | 1.3183 | | 1.2185 | 5.6591 | 19000 | 1.3196 | | 1.2119 | 5.8080 | 19500 | 1.3142 | | 1.2171 | 5.9569 | 20000 | 1.3240 | | 1.21 | 6.1058 | 20500 | 1.3235 | | 1.19 | 6.2548 | 21000 | 1.3171 | ### Framework versions - PEFT 0.9.0 - Transformers 4.43.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1