--- license: cc-by-nc-sa-4.0 language: - ja base_model: - llm-jp/llm-jp-3-13b --- # Fine-tuned Japanese Instruction Model This is a fine-tuned version of the base model **[llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)** using the **ichikara-instruction** dataset. The model has been fine-tuned for **Japanese instruction-following tasks**. --- ## Model Information ### **Base Model** - **Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) - **Architecture**: Causal Language Model - **Parameters**: 13 billion ### **Fine-tuning Dataset** - **Dataset**: [ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/) - **Authors**: 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎 - **License**: [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) The dataset includes Japanese instruction-response pairs and has been tailored for Japanese **instruction-following tasks**. 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) --- ## Usage ### 1. Install Required Libraries ```python !pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install -U peft ``` ### 2. Load the Model and Libraries ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch # Hugging Face Token (recommended to set via environment variable) HF_TOKEN = "YOUR_HF_ACCESS_TOKEN" # Model and adapter IDs base_model_id = "llm-jp/llm-jp-3-13b" # Base model adapter_id = "sasakipeter/llm-jp-3-13b-finetune" # QLoRA (4-bit quantization) configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) ``` ### 3. Load the Base Model and LoRA Adapter ```python # Load base model with 4-bit quantization model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config=bnb_config, device_map="auto", token=HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( base_model_id, trust_remote_code=True, token=HF_TOKEN ) # Integrate LoRA adapter into the base model model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN) ``` ### 4. Perform Inference ```python # Example input prompt input_text = """次の文章を要約してください。 日本は四季があり、春には桜が咲き、夏には暑さが続きます。秋には紅葉が美しく、冬には雪が降ります。""" # Format the input prompt prompt = f"""### 指示 {input_text} ### 回答 """ # Tokenize input and move to the model's device tokenized_input = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate output with torch.no_grad(): outputs = model.generate( **tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id ) # Decode the output output = tokenizer.decode(outputs[0][tokenized_input.input_ids.size(1):], skip_special_tokens=True) print("Output:") print(output) ``` --- ## License This model is released under the **CC-BY-NC-SA 4.0** license. - **Base Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) (Apache License 2.0) - **Fine-Tuning Dataset**: ichikara-instruction (CC-BY-NC-SA 4.0) **Fine-tuned Model License**: Due to the Share-Alike (SA) condition of the ichikara-instruction dataset, the fine-tuned model is licensed under **CC-BY-NC-SA 4.0**. This means the model can only be used for **non-commercial purposes**, and any derivative works must adopt the same license.