--- license: apache-2.0 language: - sw - en --- ```python %%capture # Installs Unsloth, Xformers (Flash Attention) and all other packages! !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model_name = "sartifyllc/sartify_gemma2-2B-16bit" model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, trust_remote_code=True, # load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) alpaca_prompt = """Hapo chini kuna maelezo ya kazi, pamoja na maelezo ya ziada yanayotoa muktadha zaidi. Andika jibu ambalo linakamilisha ombi hilo ipasavyo. ### Maelezo: {} ### Ziada: {} ### Jibu: {}""" FastLanguageModel.for_inference(model) # Enable native 2x faster inference # alpaca_prompt = Copied from above inputs = tokenizer( [ alpaca_prompt.format( "Rudia tu kila kitu ninachosema kwa Kiingereza kwa Kiswahili wala usiseme chochote kingine.", # instruction "Who is the president of Tanzania?", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128) ```