--- library_name: transformers language: - hu license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_17_0 - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-53-hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU type: common_voice_17_0 config: hu split: test args: 'Config: hu, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 0.29972911371257416 --- # wav2vec2-large-xlsr-53-hungarian This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - Wer: 0.2997 ## Model Comparison with the previous best wav2vec model (eval on CV17) | Model name | WER | CER | | jonatasgrosman/wav2vec2-large-xlsr-53-hungarian | 46.199835320230555 | 9.85170677112479 | | sarpba/wav2vec2-large-xlsr-53-hungarian | | | ## Intended uses & limitations More information needed ## Train & Evaluation Trained with transformers examply pytorch script Eval: ``` import torch import librosa import re import warnings from datasets import load_dataset import evaluate from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "hu" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("mozilla-foundation/common_voice_17_0", LANG_ID, split="test") wer = evaluate.load("wer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = evaluate.load("cer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.7968 | 1.0 | 758 | 0.2848 | 0.5295 | | 0.2547 | 2.0 | 1516 | 0.1908 | 0.4222 | | 0.1929 | 3.0 | 2274 | 0.1753 | 0.4000 | | 0.1532 | 4.0 | 3032 | 0.1558 | 0.3710 | | 0.1297 | 5.0 | 3790 | 0.1512 | 0.3536 | | 0.1167 | 6.0 | 4548 | 0.1574 | 0.3514 | | 0.101 | 7.0 | 5306 | 0.1483 | 0.3374 | | 0.0859 | 8.0 | 6064 | 0.1490 | 0.3299 | | 0.0791 | 9.0 | 6822 | 0.1523 | 0.3250 | | 0.0702 | 10.0 | 7580 | 0.1608 | 0.3192 | | 0.0629 | 11.0 | 8338 | 0.1664 | 0.3146 | | 0.0559 | 12.0 | 9096 | 0.1641 | 0.3103 | | 0.0527 | 13.0 | 9854 | 0.1665 | 0.3063 | | 0.0468 | 14.0 | 10612 | 0.1691 | 0.3011 | | 0.0443 | 15.0 | 11370 | 0.1748 | 0.2998 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0