""" Optimized feature extractor for document classification. Contains 20 most effective features including contextual patterns from neighboring lines. """ import numpy as np import pandas as pd import re class OptimizedFeatureExtractor: """Extract 20 optimized features for document line classification with contextual information.""" def __init__(self): # Keywords that suggest different document types self.form_keywords = [ 'name', 'date', 'address', 'phone', 'email', 'signature', 'number', 'ssn', 'dob', 'zip', ':', '_____' ] self.table_keywords = [ 'total', 'qty', 'quantity', 'price', 'amount', 'item', 'cost', 'subtotal', 'tax', '%', '$' ] # Selected features (in order of importance) self.selected_features = ['word_count', 'line_position_ratio', 'line_length', 'avg_word_length', 'column_count', 'prev_line_length', 'digit_ratio', 'next_line_length', 'uppercase_ratio', 'next_line_digit_ratio', 'next_line_word_count', 'surrounded_by_form_pattern', 'prev_line_word_count', 'prev_line_digit_ratio', 'form_keyword_count', 'special_char_count', 'next_line_form_keyword_count', 'next_line_special_char_count', 'prev_line_form_keyword_count', 'prev_line_special_char_count'] def _extract_basic_features(self, line): """Extract core text features for a single line.""" # Handle NaN or None values if not line or pd.isna(line): line = "" else: line = str(line) # Ensure it's a string words = line.split() line_lower = line.lower() # Only compute features that are in our selected set basic_features = {} if 'line_length' in self.selected_features: basic_features['line_length'] = len(line) if 'word_count' in self.selected_features: basic_features['word_count'] = len(words) if 'avg_word_length' in self.selected_features: basic_features['avg_word_length'] = len(line) / max(len(words), 1) if 'starts_with_whitespace' in self.selected_features: basic_features['starts_with_whitespace'] = 1 if line.startswith(' ') else 0 if 'digit_ratio' in self.selected_features: basic_features['digit_ratio'] = sum(c.isdigit() for c in line) / max(len(line), 1) if 'uppercase_ratio' in self.selected_features: basic_features['uppercase_ratio'] = sum(c.isupper() for c in line) / max(sum(c.isalpha() for c in line), 1) if 'special_char_count' in self.selected_features: basic_features['special_char_count'] = sum(not c.isalnum() and not c.isspace() for c in line) if 'ends_with_colon' in self.selected_features: basic_features['ends_with_colon'] = 1 if line.strip().endswith(':') else 0 if 'has_underscore_field' in self.selected_features: basic_features['has_underscore_field'] = 1 if '___' in line else 0 if 'is_all_caps' in self.selected_features: basic_features['is_all_caps'] = 1 if line.isupper() and len(line.strip()) > 1 else 0 if 'has_currency' in self.selected_features: basic_features['has_currency'] = 1 if '$' in line else 0 if 'has_percentage' in self.selected_features: basic_features['has_percentage'] = 1 if '%' in line else 0 if 'has_email_pattern' in self.selected_features: basic_features['has_email_pattern'] = 1 if '@' in line and '.' in line else 0 if 'has_phone_pattern' in self.selected_features: basic_features['has_phone_pattern'] = 1 if re.search(r'\d{3}[-.\s]?\d{3}[-.\s]?\d{4}', line) else 0 if 'column_count' in self.selected_features: basic_features['column_count'] = len(re.split(r'\s{2,}|\t', line.strip())) if 'form_keyword_count' in self.selected_features: basic_features['form_keyword_count'] = sum(1 for word in self.form_keywords if word in line_lower) if 'table_keyword_count' in self.selected_features: basic_features['table_keyword_count'] = sum(1 for word in self.table_keywords if word in line_lower) return basic_features def extract_features_for_line(self, line, all_lines=None, line_index=0): """Extract features for a line including previous/next line context.""" # Get basic features for current line features = self._extract_basic_features(line) # Add positional features if selected if 'line_position_ratio' in self.selected_features: features['line_position_ratio'] = line_index / max(len(all_lines), 1) if all_lines else 0 if 'is_near_start' in self.selected_features: features['is_near_start'] = 1 if all_lines and (line_index / max(len(all_lines), 1)) < 0.1 else 0 if 'is_near_end' in self.selected_features: features['is_near_end'] = 1 if all_lines and (line_index / max(len(all_lines), 1)) > 0.9 else 0 # Add contextual features if selected and available if all_lines and len(all_lines) > 1: # Previous line features if line_index > 0: prev_line = all_lines[line_index - 1] prev_features = self._extract_basic_features(prev_line) for feat_name, feat_value in prev_features.items(): prev_feat_name = f'prev_{feat_name}' if prev_feat_name in self.selected_features: features[prev_feat_name] = feat_value # Next line features if line_index < len(all_lines) - 1: next_line = all_lines[line_index + 1] next_features = self._extract_basic_features(next_line) for feat_name, feat_value in next_features.items(): next_feat_name = f'next_{feat_name}' if next_feat_name in self.selected_features: features[next_feat_name] = feat_value # Contextual pattern features if 'follows_label_pattern' in self.selected_features: features['follows_label_pattern'] = 1 if line_index > 0 and \ self._extract_basic_features(all_lines[line_index - 1]).get('ends_with_colon', 0) and \ features.get('line_length', 0) < 50 else 0 if 'precedes_input_pattern' in self.selected_features: features['precedes_input_pattern'] = 1 if line_index < len(all_lines) - 1 and \ features.get('ends_with_colon', 0) and \ self._extract_basic_features(all_lines[line_index + 1]).get('has_underscore_field', 0) else 0 if 'surrounded_by_form_pattern' in self.selected_features: features['surrounded_by_form_pattern'] = 1 if line_index > 0 and line_index < len(all_lines) - 1 and \ (self._extract_basic_features(all_lines[line_index - 1]).get('form_keyword_count', 0) > 0 or \ self._extract_basic_features(all_lines[line_index + 1]).get('form_keyword_count', 0) > 0) else 0 # Fill missing features with 0 for feat_name in self.selected_features: if feat_name not in features: features[feat_name] = 0 return features def extract_features_for_document(self, lines): """Extract feature matrix for all lines in a document.""" if not lines: return np.array([]), [] all_features = [] for i, line in enumerate(lines): features = self.extract_features_for_line(line, lines, i) # Convert to list in consistent order feature_vector = [features[key] for key in sorted(self.selected_features)] all_features.append(feature_vector) feature_names = sorted(self.selected_features) return np.array(all_features), feature_names