---
datasets:
- mozilla-foundation/common_voice_13_0
language:
- zh
base_model:
- openai/whisper-large-v3-turbo
pipeline_tag: automatic-speech-recognition
---
# Model Card for Model ID
This model card describes a fine-tuned version of the [Openai/Whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo), optimized for Mandarin automatic speech recognition (ASR). It achieves the following results on the evaluation set:
- Common Voice 13.0 dataset(test):
Wer before fine-tune: 77.08
Wer after fine-tune: 45.47
- Common Voice 16.1 dataset(test):
Wer before fine-tune: 77.57
Wer after fine-tune: 45.9
## Uses
```bash
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "sandy1990418/whisper-large-v3-turbo-zh-tw"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```