#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the Flax library models for sequence to sequence speech recognition. """ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. import logging import os import sys import time from dataclasses import field from functools import partial from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Union import datasets import evaluate import flax import jax import jax.numpy as jnp import numpy as np import optax from datasets import DatasetDict, load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import Repository, create_repo from torch.utils.data import DataLoader from tqdm import tqdm import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, FlaxAutoModelForSpeechSeq2Seq, HfArgumentParser, Seq2SeqTrainingArguments, is_tensorboard_available, ) from transformers.file_utils import get_full_repo_name from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risk. check_min_version("4.35.0.dev0") require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt") logger = logging.getLogger(__name__) @flax.struct.dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " "which is used during evaluation." ) }, ) @flax.struct.dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) text_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, ) dataset_cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to cache directory for saving and loading datasets"} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, ) max_duration_in_seconds: float = field( default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, ) max_label_length: float = field( default=128, metadata={"help": "Truncate transcriptions that are longer `max_eval_length` tokens."}, ) pad_input_to_multiple_of: Optional[int] = field( default=None, metadata={ "help": "If set will pad the input sequence to a multiple of the provided value. " "This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the inputs to max length." }, ) pad_target_to_multiple_of: Optional[int] = field( default=None, metadata={ "help": "If set will pad the target sequence to a multiple of the provided value. " "This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the targets to max length." }, ) preprocessing_only: bool = field( default=False, metadata={ "help": "Whether to only do data preprocessing and skip training. " "This is especially useful when data preprocessing errors out in distributed training due to timeout. " "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " "so that the cached datasets can consequently be loaded in distributed training" }, ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="validation", metadata={ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" }, ) do_lower_case: bool = field( default=True, metadata={"help": "Whether the target text should be lower cased."}, ) language: str = field( default=None, metadata={ "help": ( "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning " "only. For English speech recognition, it should be set to `None`." ) }, ) task: str = field( default="transcribe", metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."}, ) def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: """ Shift label ids one token to the right. """ shifted_label_ids = np.zeros_like(label_ids) shifted_label_ids[:, 1:] = label_ids[:, :-1] shifted_label_ids[:, 0] = decoder_start_token_id return shifted_label_ids @flax.struct.dataclass class FlaxDataCollatorSpeechSeq2SeqWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor ([`Wav2Vec2Processor`]) The processor used for proccessing the data. decoder_start_token_id (:obj: `int`) The begin-of-sentence of the decoder. input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). See above for details. max_input_length (:obj:`float`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). max_target_length (:obj:`int`, `optional`): Maximum length of the ``labels`` of the returned list and optionally padding length (see above). pad_input_to_multiple_of (:obj:`int`, `optional`): If set will pad the input sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). pad_target_to_multiple_of (:obj:`int`, `optional`): If set will pad the target sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ processor: Any decoder_start_token_id: int input_padding: Union[bool, str] = "longest" target_padding: Union[bool, str] = "max_length" max_input_length: Optional[float] = None max_target_length: Optional[int] = None pad_input_to_multiple_of: Optional[int] = None pad_target_to_multiple_of: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: # split inputs and labels since they have to be of different lengths and need # different padding methods model_input_name = self.processor.model_input_names[0] # dataloader returns a list of features which we convert to a dict input_features = {model_input_name: [feature[model_input_name] for feature in features]} label_features = {"input_ids": [feature["labels"] for feature in features]} # reformat list to dict and set to pytorch format batch = self.processor.feature_extractor.pad( input_features, max_length=self.max_input_length, padding=self.input_padding, pad_to_multiple_of=self.pad_input_to_multiple_of, return_tensors="np", ) labels_batch = self.processor.tokenizer.pad( label_features, max_length=self.max_target_length, padding=self.target_padding, pad_to_multiple_of=self.pad_target_to_multiple_of, return_tensors="np", ) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways labels = labels_batch["input_ids"] if (labels[:, 0] == self.decoder_start_token_id).all().item(): labels = labels[:, 1:] labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) # replace padding with -100 to ignore correctly when computing the loss labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) labels = labels.filled(fill_value=-100) batch["labels"] = labels batch["decoder_input_ids"] = decoder_input_ids return batch class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( num_train_steps: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your JAX/Flax versions. send_example_telemetry("run_speech_recognition_seq2seq", model_args, data_args, framework="flax") # 2. Setup logging # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) # Set the verbosity to info of the Transformers logger. # We only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() logger.info("Training/evaluation parameters %s", training_args) # Check the output dir is valid if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use `--overwrite_output_dir` to overcome." ) # Handle the repository creation if training_args.push_to_hub: if training_args.hub_model_id is None: repo_name = get_full_repo_name( Path(training_args.output_dir).absolute().name, token=training_args.hub_token ) else: repo_name = training_args.hub_model_id create_repo(repo_name, exist_ok=True, token=training_args.hub_token) repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) # 3. Load dataset raw_datasets = DatasetDict() if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, cache_dir=data_args.dataset_cache_dir, token=True if model_args.use_auth_token else None, ) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, cache_dir=data_args.dataset_cache_dir, token=True if model_args.use_auth_token else None, ) if not training_args.do_train and not training_args.do_eval: raise ValueError( "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." ) if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--text_column_name` to the correct text column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) # 5. Load pretrained model, tokenizer, and feature extractor config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained( model_args.model_name_or_path, config=config, dtype=getattr(jnp, model_args.dtype), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # 7. Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) max_label_length = ( data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length ) pad_input_to_multiple_of = data_args.pad_input_to_multiple_of pad_target_to_multiple_of = data_args.pad_target_to_multiple_of audio_column_name = data_args.audio_column_name num_workers = data_args.preprocessing_num_workers text_column_name = data_args.text_column_name model_input_name = feature_extractor.model_input_names[0] do_lower_case = data_args.do_lower_case if training_args.do_train and data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if training_args.do_eval and data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) if data_args.language is not None: # We only need to set the task id when the language is specified (i.e. in a multilingual setting) tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task) def prepare_dataset(batch): # process audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) # process audio length batch[model_input_name] = inputs.get(model_input_name)[0] batch["input_length"] = len(sample["array"]) # process targets input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] batch["labels"] = tokenizer(input_str).input_ids return batch vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess train dataset", ) # filter training data with inputs longer than max_input_length def is_audio_in_length_range(length): return min_input_length < length < max_input_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["input_length"], ) # for large datasets it is advised to run the preprocessing on a # single machine first with `args.preprocessing_only` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step `args.preprocessing_only` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: cache = {k: v.cache_files for k, v in vectorized_datasets.items()} logger.info(f"Data preprocessing finished. Files cached at {cache}.") return # 8. Load Metric metric = evaluate.load("wer") def compute_metrics(preds, labels): # replace padded labels by the padding token for idx in range(len(labels)): labels[idx][labels[idx] == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) wer = metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} # 9. Save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) processor = AutoProcessor.from_pretrained(training_args.output_dir) data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, input_padding="longest", target_padding="longest", max_target_length=max_label_length, pad_input_to_multiple_of=pad_input_to_multiple_of, pad_target_to_multiple_of=pad_target_to_multiple_of if pad_target_to_multiple_of else max_label_length, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size total_train_steps = steps_per_epoch * num_epochs # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(vectorized_datasets["train"]), training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layer_norm", "self_attn_layer_norm", "final_layer_norm", "encoder_attn_layer_norm"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) # label smoothed cross entropy def loss_fn(logits, labels, label_smoothing_factor=0.0): """ The label smoothing implementation is adapted from Flax's official example: https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 """ vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing_factor low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) ) soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) loss = optax.softmax_cross_entropy(logits, soft_labels) loss = loss - normalizing_constant # ignore padded tokens from loss, i.e. where labels are not set to -100 padding_mask = labels >= 0 loss = loss * padding_mask loss = loss.sum() num_labels = padding_mask.sum() return loss, num_labels # Define gradient update step fn def train_step(state, batch, label_smoothing_factor=0.0): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) return loss, num_labels grad_fn = jax.value_and_grad(compute_loss, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics # Define eval fn def eval_step(params, batch, label_smoothing_factor=0.0): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) metrics = {"loss": loss} return metrics # Define generation function num_beams = model_args.num_beams if model_args.num_beams is not None else model.config.num_beams gen_kwargs = {"max_length": max_label_length, "num_beams": num_beams} def generate_step(params, batch): model.params = params output_ids = model.generate(batch[model_input_name], attention_mask=batch.get("attention_mask"), **gen_kwargs) return output_ids.sequences # Create parallel version of the train and eval step p_train_step = jax.pmap( partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) ) p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") p_generate_step = jax.pmap(generate_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(vectorized_datasets['train'])}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Generate an epoch by shuffling sampling indices from the train dataset and create a data loader vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) train_loader = DataLoader( vectorized_datasets["train"], batch_size=train_batch_size, drop_last=True, collate_fn=data_collator, num_workers=training_args.dataloader_num_workers, ) # train for batch in tqdm(train_loader, desc="Training...", position=1, leave=False): batch = shard(batch.data) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) train_time += time.time() - train_start train_metric = unreplicate(train_metric) epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) # ======================== Evaluating ============================== eval_metrics = [] eval_preds = [] eval_labels = [] eval_loader = DataLoader( vectorized_datasets["eval"], batch_size=eval_batch_size, drop_last=False, collate_fn=data_collator, num_workers=training_args.dataloader_num_workers, ) for batch in tqdm(eval_loader, desc="Evaluating...", position=2, leave=False): # Model forward labels = batch["labels"] metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # generation if training_args.predict_with_generate: generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch.data) eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) eval_labels.extend(labels) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) # compute WER metric wer_desc = "" if training_args.predict_with_generate: wer_metric = compute_metrics(eval_preds, eval_labels) eval_metrics.update(wer_metric) wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) # Print metrics and update progress bar desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {wer_desc})" epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size) write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) if __name__ == "__main__": main()