# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import os import sys from dataclasses import dataclass, field from typing import Any, Dict, List, NewType, Optional, Tuple import transformers from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) DataClassType = NewType("DataClassType", Any) class H4ArgumentParser(HfArgumentParser): def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]] = None) -> List[dataclass]: """ Parse a YAML file and overwrite the default/loaded values with the values provided to the command line. Args: yaml_arg (`str`): The path to the config file used other_args (`List[str]`, *optional`): A list of strings to parse as command line arguments, e.g. ['--arg=val', '--arg2=val2']. Returns: [`List[dataclass]`]: a list of dataclasses with the values from the YAML file and the command line """ arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg)) outputs = [] # strip other args list into dict of key-value pairs other_args = {arg.split("=")[0].strip("-"): arg.split("=")[1] for arg in other_args} used_args = {} # overwrite the default/loaded value with the value provided to the command line # adapted from https://github.com/huggingface/transformers/blob/d0b5002378daabf62769159add3e7d66d3f83c3b/src/transformers/hf_argparser.py#L327 for data_yaml, data_class in zip(arg_list, self.dataclass_types): keys = {f.name for f in dataclasses.fields(data_yaml) if f.init} inputs = {k: v for k, v in vars(data_yaml).items() if k in keys} for arg, val in other_args.items(): # add only if in keys if arg in keys: base_type = data_yaml.__dataclass_fields__[arg].type inputs[arg] = val # cast type for ints, floats (default to strings) if base_type in [int, float]: inputs[arg] = base_type(val) if base_type == List[str]: inputs[arg] = [str(v) for v in val.split(",")] # bool of a non-empty string is True, so we manually check for bools if base_type == bool: if val in ["true", "True"]: inputs[arg] = True else: inputs[arg] = False # add to used-args so we can check if double add if arg not in used_args: used_args[arg] = val else: raise ValueError(f"Duplicate argument provided: {arg}, may cause unexpected behavior") obj = data_class(**inputs) outputs.append(obj) return outputs def parse(self) -> DataClassType | Tuple[DataClassType]: if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): # If we pass only one argument to the script and it's the path to a YAML file, # let's parse it to get our arguments. output = self.parse_yaml_file(os.path.abspath(sys.argv[1])) # parse command line args and yaml file elif len(sys.argv) > 2 and sys.argv[1].endswith(".yaml"): output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:]) # parse command line args only else: output = self.parse_args_into_dataclasses() if len(output) == 1: output = output[0] return output @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ base_model_revision: Optional[str] = field( default=None, metadata={"help": ("The base model checkpoint for weights initialization with PEFT adatpers.")}, ) model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) model_code_revision: str = field(default=None, metadata={"help": "The branch of the IFT model"}) torch_dtype: Optional[str] = field( default=None, metadata={ "help": ( "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " "dtype will be automatically derived from the model's weights." ), "choices": ["auto", "bfloat16", "float16", "float32"], }, ) trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."}) use_flash_attention_2: bool = field( default=False, metadata={ "help": ( "Whether to use flash attention 2. You must install this manually by running `pip install flash-attn --no-build-isolation`" ) }, ) use_peft: bool = field( default=False, metadata={"help": ("Whether to use PEFT or not for training.")}, ) lora_r: Optional[int] = field( default=16, metadata={"help": ("LoRA R value.")}, ) lora_alpha: Optional[int] = field( default=32, metadata={"help": ("LoRA alpha.")}, ) lora_dropout: Optional[float] = field( default=0.05, metadata={"help": ("LoRA dropout.")}, ) lora_target_modules: Optional[List[str]] = field( default=None, metadata={"help": ("LoRA target modules.")}, ) lora_modules_to_save: Optional[List[str]] = field( default=None, metadata={"help": ("Model layers to unfreeze & train")}, ) load_in_8bit: bool = field(default=False, metadata={"help": "use 8 bit precision"}) load_in_4bit: bool = field(default=False, metadata={"help": "use 4 bit precision"}) bnb_4bit_quant_type: Optional[str] = field( default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"} ) use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"}) def __post_init__(self): if self.load_in_8bit and self.load_in_4bit: raise ValueError("You can't use 8 bit and 4 bit precision at the same time") @dataclass class DataArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ chat_template: Optional[str] = field(default=None, metadata={"help": "The chat template to use."}) dataset_mixer: Optional[Dict[str, float]] = field( default=None, metadata={"help": ("Datasets and their proportions to be used for training ift/rl.")}, ) dataset_splits: Optional[List[str]] = field( default_factory=lambda: ["train", "test"], metadata={"help": ("List of train test splits to use in the dataset")}, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) truncation_side: Optional[str] = field( default=None, metadata={"help": "Truncation side to use for the tokenizer."} ) @dataclass class SFTConfig(transformers.TrainingArguments): """ Arguments related to the training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments """ max_seq_length: Optional[int] = field( default=None, metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, ) logging_first_step: bool = field( default=True, metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, ) optim: Optional[str] = field(default="adamw_torch") @dataclass class DPOConfig(transformers.TrainingArguments): """ Arguments related to the DPO training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments """ beta: Optional[float] = field( default=0.1, metadata={"help": "The beta factor in DPO loss. Higher beta means less divergence from the initial policy."}, ) hub_model_revision: Optional[str] = field( default="main", metadata={"help": ("The Hub model branch to push the model to.")}, ) logging_first_step: bool = field( default=True, metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, ) max_prompt_length: Optional[int] = field( default=None, metadata={"help": ("For DPO, the maximum length of the prompt to use for conditioning the model.")}, ) max_length: Optional[int] = field( default=None, metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, ) optim: Optional[str] = field(default="rmsprop") remove_unused_columns: bool = field(default=False) loss_type: Optional[str] = field(default="sigmoid", metadata={"help": ("The loss type for DPO.")})