#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pseudo-labelling audio data using the Whisper model in preparation for distillation. """ import csv # You can also adapt this script for your own pseudo-labelling tasks. Pointers for this are left as comments. import logging import os import string import sys import time import warnings from dataclasses import dataclass, field from datetime import timedelta from pathlib import Path from typing import Any, Dict, List, Optional, Union import datasets import evaluate import numpy as np import torch import transformers from accelerate import Accelerator, InitProcessGroupKwargs from accelerate.logging import get_logger from datasets import ( DatasetDict, IterableDatasetDict, load_dataset, ) from huggingface_hub import HfFolder, Repository, create_repo, get_full_repo_name from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( HfArgumentParser, Seq2SeqTrainingArguments, WhisperConfig, WhisperFeatureExtractor, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizerFast, ) from transformers.models.whisper.english_normalizer import EnglishTextNormalizer, BasicTextNormalizer from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.34.0.dev0") require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") logger = get_logger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to distill from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}, ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}, ) processor_name: Optional[str] = field( default=None, metadata={"help": "processor name or path if not the same as model_name"}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) subfolder: str = field( default="", metadata={ "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" "specify the folder name here." }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "The data type (dtype) in which to load the model weights. One of `float32` (full-precision), " "`float16` or `bfloat16` (both half-precision)." ) }, ) attn_implementation: Optional[str] = field( default=None, metadata={ "help": ( "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" "1. `eager` or `None`: default Transformers attention implementation.\n" "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." ) }, ) attn_type: Optional[str] = field( default=None, metadata={ "help": "Deprecated. Use `attn_implementation` instead." }, ) def __post_init__(self): if self.attn_type is not None and self.attn_implementation is None: # set attn_implementation in a backwards compatible way if self.attn_type == "flash_attn": self.attn_implementation = "sdpa" elif self.attn_type == "flash_attn_2": self.attn_implementation = "flash_attention_2" elif self.attn_type in [None, "eager", "sdpa", "flash_attention_2"]: self.attn_implementation = self.attn_type else: raise ValueError( f"Argument `--attn_type` is deprecated, and set to an invalid option `{self.attn_type}`. You should omit the argument `--attn_type`, and instead set `-attention_implementation` to one of the following:\n" "1. `eager` or `None`: default Transformers attention implementation.\n" "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." ) warnings.warn(f"Argument `--attn_type` is deprecated. Use `--attn_implementation` instead. Inferring `--attn_implementation={self.attn_implementation} from argument `--attn_type={self.attn_type}`.") elif self.attn_type is not None and self.attn_implementation is not None: raise ValueError("`--attn_type` and `--attn_implementation` are both specified. Only the argument `--attn_implementation`.") @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, ) dataset_cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) preprocessing_batch_size: Optional[int] = field( default=500, metadata={"help": "The batch size to use for the dataset pre-processing."}, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, ) id_column_name: str = field( default="id", metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"}, ) speaker_id_column_name: str = field( default=None, metadata={"help": "The name of the dataset column containing the speaker id data. Defaults to None."}, ) max_duration_in_seconds: float = field( default=30.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, ) max_label_length: int = field( default=256, metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, ) concatenate_audio: bool = field( default=True, metadata={"help": "Whether or not to concatenate the audio samples to `max_duration_in_seconds`."}, ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is" " especially useful when data preprocessing errors out in distributed" " training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with" " `preprocessing_only=True` so that the cached datasets can" " consequently be loaded in distributed training" ) }, ) dataset_split_name: str = field( default="train+validation+test", metadata={ "help": ( "The name of the data set splits to use (via the datasets library)." " Defaults to 'train+validation+test'. Multiple splits can be passed by splitting a" " list through the '+' character, e.g. 'train+validation' will" " pseudo-label both the 'train' and 'validation' splits sequentially." ) }, ) wandb_project: str = field( default="distil-whisper", metadata={"help": "The name of the wandb project."}, ) streaming: bool = field( default=False, metadata={"help": "Whether to use dataset's streaming mode to load and pre-process the data."}, ) max_samples_per_split: Optional[int] = field( default=None, metadata={"help": "For debugging purposes, truncate the number of examples per split to this value if set."}, ) return_timestamps: bool = field( default=False, metadata={ "help": "Whether to return the timestamps with the text. This enables the `FlaxWhisperTimestampsLogitsProcessor`." }, ) language: str = field( default=None, metadata={ "help": ( "Language for multilingual distillation. This argument should be set for multilingual distillation " "only. For English speech recognition, it should be left as `None`." ) }, ) task: str = field( default="transcribe", metadata={ "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." }, ) decode_token_ids: bool = field( default=True, metadata={"help": "Deprecated. The predicted token ids should always be decoded to text transcriptions."}, ) private_dataset: bool = field( default=False, metadata={"help": "Whether or not to create a private dataset for the pseudo-labelled data."}, ) def __post_init__(self): if not self.decode_token_ids: raise ValueError( "The argument `--decode_token_ids` is deprecated. The token ids are now always decoded to " "their corresponding text string. This is following a fix to the merges of the Whisper tokenizer" "on the Hugging Face Hub: https://huggingface.co/openai/whisper-large-v2/discussions/100. " "You should either omit the argument `--decode_token_ids`, or set it to True explicitly." ) def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: """ Shift label ids one token to the right. """ shifted_label_ids = np.zeros_like(label_ids) shifted_label_ids[:, 1:] = label_ids[:, :-1] shifted_label_ids[:, 0] = decoder_start_token_id return shifted_label_ids @dataclass class DataCollatorSpeechSeq2SeqWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor ([`Wav2Vec2Processor`]) The processor used for proccessing the data. decoder_start_token_id (:obj: `int`) The start-of-sequence token id of the decoder. input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). See above for details. max_target_length (:obj:`int`, `optional`): Maximum length of the ``labels`` of the returned list and optionally padding length (see above). """ processor: Any decoder_start_token_id: int input_padding: Union[bool, str] = "max_length" target_padding: Union[bool, str] = "max_length" max_target_length: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: # split inputs and labels since they have to be of different lengths and need # different padding methods model_input_name = self.processor.model_input_names[0] # dataloader returns a list of features which we convert to a dict input_features = {model_input_name: [feature[model_input_name] for feature in features]} label_features = {"input_ids": [feature["labels"] for feature in features]} file_ids = [feature["file_id"] for feature in features] # reformat list to dict and set to pytorch format batch = self.processor.feature_extractor.pad( input_features, padding=self.input_padding, return_tensors="pt", ) labels_batch = self.processor.tokenizer.pad( label_features, max_length=self.max_target_length, padding=self.target_padding, return_tensors="pt", ) # replace padding with -100 to ignore correctly when computing the loss labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels batch["file_ids"] = file_ids return batch def log_metric( accelerator, metrics: Dict, train_time: float, prefix: str = "eval", ): """Helper function to log all evaluation metrics with the correct prefixes and styling.""" log_metrics = {} for k, v in metrics.items(): log_metrics[f"{prefix}/{k}"] = v log_metrics[f"{prefix}/time"] = train_time accelerator.log(log_metrics) def log_pred( accelerator, pred_str: List[str], label_str: List[str], norm_pred_str: List[str], norm_label_str: List[str], prefix: str = "eval", num_lines: int = 200000, ): """Helper function to log target/predicted transcriptions to weights and biases (wandb).""" if accelerator.is_main_process: wandb_tracker = accelerator.get_tracker("wandb") # pretty name for split prefix = prefix.replace("/", "-") # convert str data to a wandb compatible format str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] # log as a table with the appropriate headers wandb_tracker.log_table( table_name=f"{prefix}/all_predictions", columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines], ) # log incorrect normalised predictions str_data = np.asarray(str_data) str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] # log as a table with the appropriate headers wandb_tracker.log_table( table_name=f"{prefix}/incorrect_predictions", columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines], ) def main(): # 1. Parse input arguments # We keep distinct sets of args, for cleaner separation of model/data/training related args parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # 2. Initialize the accelerator # We will let the accelerator handle device placement for us in this example # We simply have to specify the training precision and any trackers being used # We'll use the same dtype arguments as our JAX/Flax training script and convert # it to accelerate format if model_args.dtype == "float16": mixed_precision = "fp16" torch_dtype = torch.float16 elif model_args.dtype == "bfloat16": mixed_precision = "bf16" torch_dtype = torch.bfloat16 else: mixed_precision = "no" torch_dtype = torch.float32 kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) accelerator = Accelerator( gradient_accumulation_steps=training_args.gradient_accumulation_steps, mixed_precision=mixed_precision, log_with=training_args.report_to, project_dir=training_args.output_dir, kwargs_handlers=[kwargs], ) accelerator.init_trackers(project_name=data_args.wandb_project) # 3. Set-up basic logging # Create one log on every process with the configuration for debugging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Log a small summary on each proces logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() logger.info("Training/evaluation parameters %s", training_args) # 3. Load dataset raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() token = model_args.token if model_args.token is not None else HfFolder().get_token() data_splits = data_args.dataset_split_name.split("+") for split in data_splits: if data_args.streaming: raw_datasets[split] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=split, cache_dir=data_args.dataset_cache_dir, token=token, streaming=True, ) else: raw_datasets[split] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=split, cache_dir=data_args.dataset_cache_dir, token=token, streaming=False, num_proc=data_args.preprocessing_num_workers, ) if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" " the correct audio column - one of" f" {', '.join(next(iter(raw_datasets.values())).column_names)}." ) if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset" f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" " correct text column - one of" f" {', '.join(next(iter(raw_datasets.values())).column_names)}." ) # 7. Load pretrained model, tokenizer, and feature extractor config = WhisperConfig.from_pretrained( (model_args.config_name if model_args.config_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=token, ) feature_extractor = WhisperFeatureExtractor.from_pretrained( (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=token, ) tokenizer = WhisperTokenizerFast.from_pretrained( (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=token, ) processor = WhisperProcessor.from_pretrained( (model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=token, ) model = WhisperForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, subfolder=model_args.subfolder, token=token, low_cpu_mem_usage=True, torch_dtype=torch_dtype, attn_implementation=model_args.attn_implementation, ) model.eval() if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") return_timestamps = data_args.return_timestamps if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: is_multilingual = True # We need to set the language and task ids for multilingual checkpoints tokenizer.set_prefix_tokens( language=data_args.language, task=data_args.task, predict_timestamps=return_timestamps ) elif data_args.language is not None: raise ValueError( "Setting language token for an English-only checkpoint is not permitted. The language argument should " "only be set for multilingual checkpoints." ) else: is_multilingual = False # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), ) # 7. Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) max_label_length = ( data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length ) audio_column_name = data_args.audio_column_name sampling_rate = feature_extractor.sampling_rate preprocessing_batch_size = data_args.preprocessing_batch_size num_workers = data_args.preprocessing_num_workers dataloader_num_workers = training_args.dataloader_num_workers text_column_name = data_args.text_column_name model_input_name = feature_extractor.model_input_names[0] id_column_name = data_args.id_column_name speaker_id_column_name = data_args.speaker_id_column_name normalizer = ( BasicTextNormalizer() if data_args.language is not None else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) ) timestamp_position = 3 if is_multilingual else 1 decoder_prev_token_id = tokenizer.convert_tokens_to_ids("<|startofprev|>") decoder_eot_token_id = tokenizer.eos_token_id if data_args.max_samples_per_split is not None: for split in data_splits: raw_datasets[split] = ( raw_datasets[split].take(data_args.max_samples_per_split) if data_args.streaming else raw_datasets[split].select(range(data_args.max_samples_per_split)) ) if speaker_id_column_name is not None: raw_datasets = raw_datasets.sort(speaker_id_column_name) def concatenate_dataset(batch): audio = [sample["array"] for sample in batch[audio_column_name]] input_lengths = [len(sample) for sample in audio] text = batch[text_column_name] speaker_id = batch[speaker_id_column_name] if speaker_id_column_name else len(text) * [None] concatenated_audio = [] concatenated_text = [] concatenated_speaker = [] condition_on_prev = [] audio_sample = audio[0] text_sample = text[0] for idx in range(1, len(audio)): prev_speaker = speaker_id[idx - 1] speaker = speaker_id[idx] if len(audio_sample) + input_lengths[idx] < max_input_length: if speaker == prev_speaker: # we have no information about whether the segments follow on sequentially # so we just ensure the same speaker as we concatenate across files audio_sample = np.append(audio_sample, audio[idx]) # extra spaces in the text transcription don't matter, since we only use it for the WER computation text_sample += " " + text[idx] else: # speakers do not follow sequentially, save the audio and start looping again concatenated_audio.append(audio_sample) concatenated_text.append(text_sample) concatenated_speaker.append(speaker) condition_on_prev.append(0) audio_sample = audio[idx] text_sample = text[idx] else: # concatenated audio exceeds max length, save the audio and start looping again concatenated_audio.append(audio_sample) concatenated_text.append(text_sample) concatenated_speaker.append(speaker) condition_on_prev.append(1) audio_sample = audio[idx] text_sample = text[idx] batch[audio_column_name] = [{"array": array, "sampling_rate": sampling_rate} for array in concatenated_audio] batch[text_column_name] = concatenated_text batch[id_column_name] = concatenated_speaker batch["condition_on_prev"] = condition_on_prev return batch raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) if data_args.concatenate_audio and not data_args.streaming: raw_datasets = raw_datasets.map( concatenate_dataset, batched=True, batch_size=preprocessing_batch_size, num_proc=num_workers, remove_columns=set(raw_datasets_features) - {audio_column_name, text_column_name, id_column_name, "condition_on_prev"}, desc="Concatenating dataset...", ) raw_datasets = raw_datasets.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)) pretty_name = data_args.dataset_name.split("/")[-1] def postprocess_ids(speaker_ids, indices): speaker_ids_formatted = [] for speaker, idx in zip(speaker_ids, indices): formatted_idx = f"{pretty_name}-{speaker}-{idx}" if speaker is not None else f"{pretty_name}-{idx}" speaker_ids_formatted.append(formatted_idx) return {id_column_name: speaker_ids_formatted} raw_datasets = raw_datasets.map( postprocess_ids, input_columns=[id_column_name], with_indices=True, desc="Setting sample idxs...", batched=True, batch_size=preprocessing_batch_size, num_proc=num_workers, ) else: raise ValueError( "Streaming mode is not yet compatible with concatenating audios to `max_duration_in_seconds`." "Either set `--streaming=False` and download the audios locally, or open an issue on the Distil-Whisper repo to request this feature." ) def prepare_dataset(batch): # process audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) # process audio length batch[model_input_name] = inputs.get(model_input_name)[0] # process targets input_str = batch[text_column_name] batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids # record the id of the sample as token ids batch["file_id"] = batch[id_column_name] return batch raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) if data_args.streaming: vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=raw_datasets_features) else: vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=raw_datasets_features, num_proc=num_workers, desc="preprocess dataset", ) # for large datasets it is advised to run the preprocessing on a # single machine first with `args.preprocessing_only` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step `args.preprocessing_only` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: cache = {k: v.cache_files for k, v in vectorized_datasets.items()} logger.info(f"Data preprocessing finished. Files cached at {cache}.") return if data_args.streaming and dataloader_num_workers > 0: logger.warning( "Using multiple dataloader num workers with streaming mode will result in different shards of " "data being transcribed in parallel. This is not advised if you want to preserve the order of the " "audio-text data." ) # Handle the repository creation output_dir = training_args.output_dir if training_args.push_to_hub: if training_args.hub_model_id is None: repo_name = get_full_repo_name( Path(output_dir).absolute().name, token=token, ) else: repo_name = training_args.hub_model_id create_repo(repo_name, exist_ok=True, token=token, repo_type="dataset", private=data_args.private_dataset) repo = Repository( output_dir, clone_from=repo_name, token=token, repo_type="dataset", ) # Ensure large txt files can be pushed to the Hub with git-lfs with open(os.path.join(output_dir, ".gitattributes"), "r+") as f: git_lfs_extensions = f.read() if "*.csv" not in git_lfs_extensions: f.write("*.csv filter=lfs diff=lfs merge=lfs -text") else: # this is where we'll save our transcriptions if not os.path.exists(output_dir): os.makedirs(output_dir) # 8. Load Metric metric = evaluate.load("wer") def compute_metrics(preds, labels, file_ids): # replace padded labels by the padding token for idx in range(len(labels)): labels[idx][labels[idx] == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(preds, skip_special_tokens=False, decode_with_timestamps=return_timestamps) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) # normalize everything and re-compute the WER norm_pred_str = [normalizer(pred) for pred in pred_str] norm_label_str = [normalizer(label) for label in label_str] # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] file_ids = [file_ids[i] for i in range(len(file_ids)) if len(norm_label_str[i]) > 0] # filtering step to only evaluate the samples that correspond to non-zero normalized references: norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) return {"wer": wer}, pred_str, label_str, norm_pred_str, norm_label_str, file_ids def filter_eot_tokens(preds): for idx in range(len(preds)): # remove the EOT tokens to get the 'true' token length token_ids = [token for token in preds[idx] if token != decoder_eot_token_id] token_ids = token_ids + [decoder_eot_token_id] preds[idx] = token_ids return preds # 12. Define Training Schedule per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, # <|startoftranscript|> input_padding="longest", target_padding="max_length", max_target_length=max_label_length, ) # 14. Define generation arguments - we need to do this before we wrap the models in DDP # so that we can still access the configs num_beams = ( training_args.generation_num_beams if training_args.generation_num_beams is not None else getattr(model.generation_config, "num_beams", 1) ) gen_kwargs = { "max_length": max_label_length, "num_beams": num_beams, "return_timestamps": return_timestamps, } if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: # forcing the language and task tokens helps multilingual models in their generations gen_kwargs.update( { "language": data_args.language, "task": data_args.task, } ) model.generation_config.forced_decoder_ids = None # 15. Prepare everything with accelerate model = accelerator.prepare(model) def eval_step_with_save(split="eval"): # ======================== Evaluating ============================== eval_preds = [] eval_labels = [] eval_ids = [] pred_str = [] eval_start = time.time() eval_loader = DataLoader( vectorized_datasets[split], batch_size=per_device_eval_batch_size, collate_fn=data_collator, num_workers=dataloader_num_workers, pin_memory=True, ) eval_loader = accelerator.prepare(eval_loader) batches = tqdm(eval_loader, desc=f"Evaluating {split}...", disable=not accelerator.is_local_main_process) # make the split name pretty for librispeech etc split = split.replace(".", "-").split("/")[-1] output_csv = os.path.join(output_dir, f"{split}-transcription.csv") for step, batch in enumerate(batches): file_ids = batch.pop("file_ids") # Generate predictions and pad to max generated length generate_fn = model.module.generate if accelerator.num_processes > 1 else model.generate generated_ids = generate_fn(batch["input_features"].to(dtype=torch_dtype), **gen_kwargs) generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id) # Gather all predictions and targets file_ids, generated_ids, labels = accelerator.gather_for_metrics( (file_ids, generated_ids, batch["labels"]) ) eval_preds.extend(generated_ids.cpu().numpy()) eval_labels.extend(labels.cpu().numpy()) eval_ids.extend(file_ids) if step % training_args.logging_steps == 0 and step > 0: batches.write(f"Saving transcriptions for split {split} step {step}") accelerator.wait_for_everyone() pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)):] pred_ids = filter_eot_tokens(pred_ids) pred_str.extend( tokenizer.batch_decode(pred_ids, skip_special_tokens=False,decode_with_timestamps=return_timestamps) ) csv_data = [[eval_ids[i], pred_str[i]] for i in range(len(eval_preds))] with open(output_csv, "w", encoding="UTF8", newline="") as f: writer = csv.writer(f) # write multiple rows writer.writerow(["file_id", "whisper_transcript"]) writer.writerows(csv_data) if training_args.push_to_hub and accelerator.is_main_process: repo.push_to_hub( commit_message=f"Saving transcriptions for split {split} step {step}.", blocking=False, ) accelerator.wait_for_everyone() eval_time = time.time() - eval_start # compute WER metric for eval sets wer_desc = "" if "validation" in split or "test" in split: eval_preds = filter_eot_tokens(eval_preds) wer_metric, pred_str, label_str, norm_pred_str, norm_label_str, eval_ids = compute_metrics( eval_preds, eval_labels, eval_ids ) wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) # Save metrics + predictions log_metric( accelerator, metrics=wer_metric, train_time=eval_time, prefix=split, ) log_pred( accelerator, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split, ) else: pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)):] pred_ids = filter_eot_tokens(pred_ids) pred_str.extend( tokenizer.batch_decode(pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps) ) batches.write(f"Saving final transcriptions for split {split}.") csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))] with open(output_csv, "w", encoding="UTF8", newline="") as f: writer = csv.writer(f) # write multiple rows writer.writerow(["file_id", "whisper_transcript"]) writer.writerows(csv_data) # Print metrics logger.info(wer_desc) if not data_args.streaming and accelerator.is_main_process: raw_datasets[split] = raw_datasets[split].add_column("whisper_transcript", pred_str) raw_datasets[split] = raw_datasets[split].add_column("eval_preds", eval_preds) def add_concatenated_text(eval_preds, condition_on_prev): concatenated_prev = [None] for token_ids, condition in zip(eval_preds[:-1], condition_on_prev[1:]): if condition is False: concatenated_prev.append(None) else: prompt_ids = [token for token in token_ids if token != decoder_eot_token_id] prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:] concatenated_prev.append(prompt_ids) return {"condition_on_prev": concatenated_prev} raw_datasets[split] = raw_datasets[split].map( add_concatenated_text, input_columns=["eval_preds", "condition_on_prev"], remove_columns=["eval_preds"], desc="Setting condition on prev...", batched=True, batch_size=preprocessing_batch_size, num_proc=num_workers, ) logger.info("***** Running Labelling *****") logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") logger.info( f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size * accelerator.num_processes}" ) logger.info(f" Predict labels with timestamps = {return_timestamps}") for split in data_splits: eval_step_with_save(split=split) accelerator.wait_for_everyone() if training_args.push_to_hub and accelerator.is_main_process: repo.push_to_hub( commit_message=f"Saving final transcriptions for split {split.replace('.', '-').split('/')[-1]}", blocking=False, ) if not data_args.streaming and accelerator.is_main_process: raw_datasets.save_to_disk(output_dir, num_proc=num_workers) if training_args.push_to_hub: raw_datasets.push_to_hub(repo_name, config_name=data_args.dataset_config_name) accelerator.end_training() if __name__ == "__main__": main()