import copy import logging import os import sys from dataclasses import dataclass, field from pathlib import Path from typing import Optional import numpy as np import torch from huggingface_hub import create_repo, get_full_repo_name, upload_folder from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ model_name_or_path: Optional[str] = field( metadata={"help": "The teacher checkpoint for weights initialization"}, ) output_dir: str = field( metadata={"help": "The output directory where the student checkpoint will be written."}, ) model_revision: Optional[str] = field( default="main", metadata={"help": "The specific teacher model version to use (can be a branch name, tag name or commit id)."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co"}, ) subfolder: Optional[str] = field( default="", metadata={ "help": "In case the relevant files are located inside a subfolder of the teacher model repo on huggingface.co, you can" "specify the folder name here." }, ) torch_dtype: Optional[str] = field( default=None, metadata={ "help": ( "Override the default `torch.dtype` and load the teacher model under this dtype. If `auto` is passed, the " "dtype will be automatically derived from the model's weights." ), "choices": ["auto", "bfloat16", "float16", "float32"], }, ) trust_remote_code: Optional[bool] = field( default=False, metadata={"help": "Trust remote code when loading a model."} ) token: Optional[bool] = field( default=True, metadata={ "help": "Will use the token generated when running `transformers-cli login` necessary to use this script with private models)." }, ) num_hidden_layers: Optional[int] = field( default=6, metadata={"help": "The number of hidden layers in the Transformer decoder."}, ) push_to_hub: Optional[bool] = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) low_cpu_mem_usage: Optional[bool] = field( default=True, metadata={ "help": "Create the teacher model as an empty shell, and only materialize its parameters when the pretrained weights are loaded. " "Significantly benefits loading time and RAM consumption." }, ) initialization_strategy: Optional[str] = field( default="maximally_spaced", metadata={ "help": "The weight initialization strategy for the decoder weights. Either `first_n`, or `maximally_spaced`." }, ) def main(): # 1. Parse input arguments parser = HfArgumentParser(ModelArguments) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] else: model_args = parser.parse_args_into_dataclasses()[0] logger.info(f"Model parameters {model_args}") logger.info("*** Load pretrained teacher model ***") torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) # quantization_config = get_quantization_config(model_args) teacher_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, torch_dtype=torch_dtype, low_cpu_mem_usage=model_args.low_cpu_mem_usage, revision=model_args.model_revision, cache_dir=model_args.cache_dir, subfolder=model_args.subfolder, trust_remote_code=model_args.trust_remote_code, token=model_args.token, # device_map=get_kbit_device_map() if quantization_config is not None else None, # quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) generation_config = teacher_model.generation_config teacher_config = teacher_model.config logger.info("*** Teacher model loaded! ***") student_config = copy.deepcopy(teacher_config) student_config.num_hidden_layers = model_args.num_hidden_layers teacher_hidden_layers = teacher_config.num_hidden_layers if model_args.initialization_strategy == "maximally_spaced": decoder_mapping = np.linspace(0, teacher_hidden_layers - 1, student_config.num_hidden_layers, dtype=int) elif model_args.initialization_strategy == "first_n": decoder_mapping = np.arange(0, student_config.num_hidden_layers) else: raise ValueError( f"Got invalid initialization_strategy strategy '{model_args.initialization_strategy}', should be one of " "'maximally_spaced` or `first_n`." ) # always use the last teacher layer as the last student layer decoder_mapping[-1] = teacher_hidden_layers - 1 decoder_map = {} for student_layer, teacher_layer in enumerate(decoder_mapping): decoder_map[teacher_layer] = student_layer # init the student params from the teacher model logger.info("*** Load and initialise student model ***") student_model = AutoModelForCausalLM.from_config(student_config) missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False) student_model.to(dtype=torch_dtype) if len(missing_keys) > 0: raise RuntimeError( f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n" f"Missing key(s) in state_dict: {missing_keys}" ) if student_config.num_hidden_layers == teacher_hidden_layers: decoder_keys = [key for key in unexpected_keys if "model.layers" in key] if len(decoder_keys) > 0: raise RuntimeError( f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n" f"Unexpected key(s) in state_dict: {decoder_keys}" ) for layer in range(teacher_hidden_layers): if layer in decoder_map: # re-introduce pre-defined layers from the teacher student_model.model.layers[decoder_map[layer]].load_state_dict( teacher_model.model.layers[layer].state_dict() ) logger.info("*** Student model loaded! ***") # remove the teacher params and model del teacher_model # save the converted weights and model if model_args.output_dir is not None: student_model.save_pretrained(model_args.output_dir) # we also need to correctly save the processor and generation config tokenizer.save_pretrained(model_args.output_dir) generation_config.save_pretrained(model_args.output_dir) if model_args.push_to_hub: if model_args.hub_model_id is None: repo_name = get_full_repo_name( Path(model_args.output_dir).absolute().name, token=model_args.token, ) else: repo_name = model_args.hub_model_id create_repo(repo_name, exist_ok=True, token=model_args.token) upload_folder( repo_id=repo_name, folder_path=model_args.output_dir, commit_description="Uploading initialised weights and configs", ) if __name__ == "__main__": main()