See axolotl config
axolotl version: 0.13.0.dev0
base_model: google/gemma-3-270m-it
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
load_in_8bit: false
load_in_4bit: false
# huggingface repo
chat_template: gemma3
eot_tokens:
- <end_of_turn>
datasets:
- path: sam2ai/en-oriya-translation
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
roles:
assistant:
- gpt
user:
- human
val_set_size: 0.1
output_dir: ./outputs/gemma3-270m
#adapter: qlora
#lora_r: 32
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_linear: true
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
wandb_project: gemma3-en-odia-mt
wandb_entity:
wandb_watch:
wandb_name: gemma3-270m-it
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch:
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs/gemma3-270m
This model is a fine-tuned version of google/gemma-3-270m-it on the sam2ai/en-oriya-translation dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1357
- training_steps: 13570
Training results
Framework versions
- Transformers 4.55.4
- Pytorch 2.7.0+gitf717b2a
- Datasets 4.0.0
- Tokenizers 0.21.1
- Downloads last month
- 13