--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: parking-utcustom-train-SF-RGB-b5_2 results: [] --- # parking-utcustom-train-SF-RGB-b5_2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/parking-utcustom-train dataset. It achieves the following results on the evaluation set: - Loss: 0.1577 - Mean Iou: 0.4996 - Mean Accuracy: 0.9992 - Overall Accuracy: 0.9992 - Accuracy Unlabeled: nan - Accuracy Parking: nan - Accuracy Unparking: 0.9992 - Iou Unlabeled: nan - Iou Parking: 0.0 - Iou Unparking: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Parking | Accuracy Unparking | Iou Unlabeled | Iou Parking | Iou Unparking | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.767 | 20.0 | 20 | 0.6634 | 0.3299 | 0.9898 | 0.9898 | nan | nan | 0.9898 | 0.0 | 0.0 | 0.9898 | | 0.5036 | 40.0 | 40 | 0.3752 | 0.3316 | 0.9949 | 0.9949 | nan | nan | 0.9949 | 0.0 | 0.0 | 0.9949 | | 0.3486 | 60.0 | 60 | 0.2976 | 0.3319 | 0.9958 | 0.9958 | nan | nan | 0.9958 | 0.0 | 0.0 | 0.9958 | | 0.2729 | 80.0 | 80 | 0.2355 | 0.3326 | 0.9978 | 0.9978 | nan | nan | 0.9978 | 0.0 | 0.0 | 0.9978 | | 0.2246 | 100.0 | 100 | 0.1822 | 0.4983 | 0.9966 | 0.9966 | nan | nan | 0.9966 | nan | 0.0 | 0.9966 | | 0.2131 | 120.0 | 120 | 0.1577 | 0.4996 | 0.9992 | 0.9992 | nan | nan | 0.9992 | nan | 0.0 | 0.9992 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3