--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_vocabulary_task1_fold1 results: [] --- # arabert_baseline_vocabulary_task1_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4495 - Qwk: 0.5070 - Mse: 0.4537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 6.1233 | -0.0049 | 6.0762 | | No log | 0.6667 | 4 | 2.5238 | 0.0438 | 2.5221 | | No log | 1.0 | 6 | 1.6945 | 0.0677 | 1.7016 | | No log | 1.3333 | 8 | 0.6878 | 0.2489 | 0.6921 | | No log | 1.6667 | 10 | 0.5146 | 0.2759 | 0.5204 | | No log | 2.0 | 12 | 0.6279 | 0.2036 | 0.6327 | | No log | 2.3333 | 14 | 1.1313 | 0.0888 | 1.1412 | | No log | 2.6667 | 16 | 0.8112 | 0.1508 | 0.8178 | | No log | 3.0 | 18 | 0.5968 | 0.3475 | 0.6025 | | No log | 3.3333 | 20 | 0.5587 | 0.3475 | 0.5649 | | No log | 3.6667 | 22 | 0.3908 | 0.4828 | 0.3937 | | No log | 4.0 | 24 | 0.3808 | 0.4828 | 0.3836 | | No log | 4.3333 | 26 | 0.5135 | 0.4190 | 0.5196 | | No log | 4.6667 | 28 | 0.7114 | 0.2825 | 0.7220 | | No log | 5.0 | 30 | 0.6755 | 0.3456 | 0.6851 | | No log | 5.3333 | 32 | 0.4917 | 0.5259 | 0.4969 | | No log | 5.6667 | 34 | 0.4653 | 0.5679 | 0.4693 | | No log | 6.0 | 36 | 0.4650 | 0.5917 | 0.4695 | | No log | 6.3333 | 38 | 0.4511 | 0.5817 | 0.4552 | | No log | 6.6667 | 40 | 0.4643 | 0.4296 | 0.4687 | | No log | 7.0 | 42 | 0.4888 | 0.3970 | 0.4933 | | No log | 7.3333 | 44 | 0.4987 | 0.3970 | 0.5033 | | No log | 7.6667 | 46 | 0.4509 | 0.5191 | 0.4546 | | No log | 8.0 | 48 | 0.3997 | 0.5917 | 0.4021 | | No log | 8.3333 | 50 | 0.4026 | 0.5917 | 0.4048 | | No log | 8.6667 | 52 | 0.4048 | 0.5817 | 0.4074 | | No log | 9.0 | 54 | 0.4217 | 0.5366 | 0.4250 | | No log | 9.3333 | 56 | 0.4348 | 0.5366 | 0.4386 | | No log | 9.6667 | 58 | 0.4485 | 0.5070 | 0.4527 | | No log | 10.0 | 60 | 0.4495 | 0.5070 | 0.4537 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1