--- base_model: google/vit-base-patch16-224-in21k library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2481 - Accuracy: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 168 - eval_batch_size: 168 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 672 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8568 | 0.9933 | 74 | 0.3500 | 0.8978 | | 0.7674 | 2.0 | 149 | 0.3065 | 0.9089 | | 0.724 | 2.9933 | 223 | 0.2805 | 0.9164 | | 0.6316 | 4.0 | 298 | 0.2725 | 0.9197 | | 0.6462 | 4.9933 | 372 | 0.2659 | 0.9195 | | 0.5809 | 6.0 | 447 | 0.2623 | 0.9223 | | 0.5212 | 6.9933 | 521 | 0.2624 | 0.9217 | | 0.5561 | 8.0 | 596 | 0.2523 | 0.9259 | | 0.5061 | 8.9933 | 670 | 0.2502 | 0.9268 | | 0.4955 | 9.9329 | 740 | 0.2481 | 0.9279 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0