--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft license: apache-2.0 metrics: - accuracy tags: - trl - reward-trainer - generated_from_trainer model-index: - name: pairwise-reward-sft-zephyr-7b-sft-qlora-ultrafeedback-ultrafeedback-binarized-20241013-124646 results: [] --- # pairwise-reward-sft-zephyr-7b-sft-qlora-ultrafeedback-ultrafeedback-binarized-20241013-124646 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4739 - Accuracy: 0.7592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6209 | 0.0526 | 100 | 0.6427 | 0.6784 | | 0.6346 | 0.1052 | 200 | 0.5829 | 0.7165 | | 0.5945 | 0.1578 | 300 | 0.5333 | 0.7351 | | 0.5258 | 0.2104 | 400 | 0.5169 | 0.7461 | | 0.4914 | 0.2630 | 500 | 0.5209 | 0.7346 | | 0.4995 | 0.3155 | 600 | 0.5056 | 0.7536 | | 0.5272 | 0.3681 | 700 | 0.5041 | 0.7541 | | 0.4993 | 0.4207 | 800 | 0.4943 | 0.7471 | | 0.5317 | 0.4733 | 900 | 0.4970 | 0.7602 | | 0.5193 | 0.5259 | 1000 | 0.4850 | 0.7597 | | 0.4534 | 0.5785 | 1100 | 0.4931 | 0.7582 | | 0.4828 | 0.6311 | 1200 | 0.4808 | 0.7582 | | 0.5432 | 0.6837 | 1300 | 0.4836 | 0.7491 | | 0.4343 | 0.7363 | 1400 | 0.4797 | 0.7582 | | 0.4287 | 0.7889 | 1500 | 0.4794 | 0.7612 | | 0.5117 | 0.8414 | 1600 | 0.4799 | 0.7587 | | 0.4369 | 0.8940 | 1700 | 0.4770 | 0.7582 | | 0.4537 | 0.9466 | 1800 | 0.4750 | 0.7566 | | 0.451 | 0.9992 | 1900 | 0.4739 | 0.7592 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0