--- language: bn tags: - bengali-ner - bengali - bangla - NER license: mit datasets: - wikiann - xtreme --- # Multi-lingual BERT Bengali Name Entity Recognition `mBERT-Bengali-NER` is a transformer-based Bengali NER model build with [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) model and [Wikiann](https://huggingface.co/datasets/wikiann) Datasets. ## How to Use ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("sagorsarker/mbert-bengali-ner") model = AutoModelForTokenClassification.from_pretrained("sagorsarker/mbert-bengali-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "আমি জাহিদ এবং আমি ঢাকায় বাস করি।" ner_results = nlp(example) print(ner_results) ``` ## Label and ID Mapping | Label ID | Label | | -------- | ----- | |0 | O | | 1 | B-PER | | 2 | I-PER | | 3 | B-ORG| | 4 | I-ORG | | 5 | B-LOC | | 6 | I-LOC | ## Training Details - mBERT-Bengali-NER trained with [Wikiann](https://huggingface.co/datasets/wikiann) datasets - mBERT-Bengali-NER trained with [transformers-token-classification](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb) script - mBERT-Bengali-NER total trained 5 epochs. - Trained in Kaggle GPU ## Evaluation Results |Model | F1 | Precision | Recall | Accuracy | Loss | | ---- | --- | --------- | ----- | -------- | --- | |mBert-Bengali-NER | 0.97105 | 0.96769| 0.97443 | 0.97682 | 0.12511 |