--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - null model-index: - name: nbailab-base-ner-scandi-unbalanced results: - task: name: Token Classification type: token-classification --- # nbailab-base-ner-scandi-unbalanced This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0666 - Micro F1: 0.8693 - Micro F1 No Misc: 0.8925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90135.90000000001 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro F1 No Misc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------------:| | 0.6682 | 1.0 | 2816 | 0.0872 | 0.6916 | 0.7306 | | 0.0684 | 2.0 | 5632 | 0.0464 | 0.8167 | 0.8538 | | 0.0444 | 3.0 | 8448 | 0.0367 | 0.8485 | 0.8783 | | 0.0349 | 4.0 | 11264 | 0.0316 | 0.8684 | 0.8920 | | 0.0282 | 5.0 | 14080 | 0.0290 | 0.8820 | 0.9033 | | 0.0231 | 6.0 | 16896 | 0.0283 | 0.8854 | 0.9060 | | 0.0189 | 7.0 | 19712 | 0.0253 | 0.8964 | 0.9156 | | 0.0155 | 8.0 | 22528 | 0.0260 | 0.9016 | 0.9201 | | 0.0123 | 9.0 | 25344 | 0.0266 | 0.9059 | 0.9233 | | 0.0098 | 10.0 | 28160 | 0.0280 | 0.9091 | 0.9279 | | 0.008 | 11.0 | 30976 | 0.0309 | 0.9093 | 0.9287 | | 0.0065 | 12.0 | 33792 | 0.0313 | 0.9103 | 0.9284 | | 0.0053 | 13.0 | 36608 | 0.0322 | 0.9078 | 0.9257 | | 0.0046 | 14.0 | 39424 | 0.0343 | 0.9075 | 0.9256 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3