--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformerSAAD_26Aug_new1 results: [] --- # segformerSAAD_26Aug_new1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixGUNNew dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2892 - eval_mean_iou: 0.7470 - eval_mean_accuracy: 0.8404 - eval_overall_accuracy: 0.9883 - eval_accuracy_BKG: 0.9937 - eval_accuracy_Knife: nan - eval_accuracy_Gun: 0.6872 - eval_iou_BKG: 0.9882 - eval_iou_Knife: nan - eval_iou_Gun: 0.5059 - eval_runtime: 3.6938 - eval_samples_per_second: 3.79 - eval_steps_per_second: 0.271 - epoch: 4.0 - step: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1