saad7489 commited on
Commit
2c4c085
1 Parent(s): 11fe362

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,93 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/mit-b2
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b2-finetuned-segments-SixrayGun8-15-2024
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b2-finetuned-segments-SixrayGun8-15-2024
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the saad7489/SIXray_Gun dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0404
21
+ - Mean Iou: 0.5806
22
+ - Mean Accuracy: 0.8934
23
+ - Overall Accuracy: 0.8890
24
+ - Accuracy No-label: nan
25
+ - Accuracy Object1: 0.8756
26
+ - Accuracy Object2: 0.9112
27
+ - Accuracy Object3: nan
28
+ - Accuracy Object4: nan
29
+ - Accuracy Object5: nan
30
+ - Accuracy Object6: nan
31
+ - Iou No-label: 0.0
32
+ - Iou Object1: 0.8624
33
+ - Iou Object2: 0.8795
34
+ - Iou Object3: nan
35
+ - Iou Object4: nan
36
+ - Iou Object5: nan
37
+ - Iou Object6: nan
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 6e-05
57
+ - train_batch_size: 20
58
+ - eval_batch_size: 20
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 60
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No-label | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Accuracy Object4 | Accuracy Object5 | Accuracy Object6 | Iou No-label | Iou Object1 | Iou Object2 | Iou Object3 | Iou Object4 | Iou Object5 | Iou Object6 |
67
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------:|:----------------:|:----------------:|:----------------:|:----------------:|:----------------:|:----------------:|:------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
68
+ | 0.9839 | 3.3333 | 20 | 1.1748 | 0.2064 | 0.6978 | 0.6660 | nan | 0.5695 | 0.8261 | nan | nan | nan | nan | 0.0 | 0.5204 | 0.5115 | 0.0 | nan | nan | 0.0 |
69
+ | 0.3693 | 6.6667 | 40 | 0.2452 | 0.4796 | 0.7757 | 0.7861 | nan | 0.8178 | 0.7336 | nan | nan | nan | nan | 0.0 | 0.7380 | 0.7007 | nan | nan | nan | nan |
70
+ | 0.1373 | 10.0 | 60 | 0.1276 | 0.5223 | 0.8244 | 0.8300 | nan | 0.8471 | 0.8017 | nan | nan | nan | nan | 0.0 | 0.7908 | 0.7761 | nan | nan | nan | nan |
71
+ | 0.072 | 13.3333 | 80 | 0.0732 | 0.5281 | 0.8149 | 0.8097 | nan | 0.7937 | 0.8360 | nan | nan | nan | nan | 0.0 | 0.7729 | 0.8113 | nan | nan | nan | nan |
72
+ | 0.0488 | 16.6667 | 100 | 0.0609 | 0.4191 | 0.8643 | 0.8619 | nan | 0.8546 | 0.8739 | nan | nan | nan | nan | 0.0 | 0.8313 | 0.8450 | 0.0 | nan | nan | nan |
73
+ | 0.0408 | 20.0 | 120 | 0.0539 | 0.5675 | 0.8731 | 0.8666 | nan | 0.8468 | 0.8993 | nan | nan | nan | nan | 0.0 | 0.8358 | 0.8668 | nan | nan | nan | nan |
74
+ | 0.039 | 23.3333 | 140 | 0.0491 | 0.5618 | 0.8647 | 0.8590 | nan | 0.8414 | 0.8881 | nan | nan | nan | nan | 0.0 | 0.8264 | 0.8590 | nan | nan | nan | nan |
75
+ | 0.0365 | 26.6667 | 160 | 0.0484 | 0.4312 | 0.8834 | 0.8773 | nan | 0.8588 | 0.9081 | nan | nan | nan | nan | 0.0 | 0.8494 | 0.8753 | 0.0 | nan | nan | nan |
76
+ | 0.0721 | 30.0 | 180 | 0.0486 | 0.4383 | 0.9014 | 0.8957 | nan | 0.8783 | 0.9245 | nan | nan | nan | nan | 0.0 | 0.8673 | 0.8861 | 0.0 | nan | nan | nan |
77
+ | 0.0311 | 33.3333 | 200 | 0.0446 | 0.5701 | 0.8758 | 0.8697 | nan | 0.8509 | 0.9007 | nan | nan | nan | nan | 0.0 | 0.8400 | 0.8704 | nan | nan | nan | nan |
78
+ | 0.0404 | 36.6667 | 220 | 0.0431 | 0.5719 | 0.8794 | 0.8748 | nan | 0.8609 | 0.8978 | nan | nan | nan | nan | 0.0 | 0.8472 | 0.8686 | nan | nan | nan | nan |
79
+ | 0.0284 | 40.0 | 240 | 0.0441 | 0.5852 | 0.9034 | 0.8989 | nan | 0.8852 | 0.9216 | nan | nan | nan | nan | 0.0 | 0.8701 | 0.8855 | nan | nan | nan | nan |
80
+ | 0.0302 | 43.3333 | 260 | 0.0424 | 0.4372 | 0.8979 | 0.8935 | nan | 0.8799 | 0.9159 | nan | nan | nan | nan | 0.0 | 0.8668 | 0.8819 | 0.0 | nan | nan | nan |
81
+ | 0.0283 | 46.6667 | 280 | 0.0429 | 0.5891 | 0.9094 | 0.9046 | nan | 0.8899 | 0.9290 | nan | nan | nan | nan | 0.0 | 0.8762 | 0.8910 | nan | nan | nan | nan |
82
+ | 0.0261 | 50.0 | 300 | 0.0413 | 0.5813 | 0.8950 | 0.8904 | nan | 0.8765 | 0.9135 | nan | nan | nan | nan | 0.0 | 0.8632 | 0.8808 | nan | nan | nan | nan |
83
+ | 0.023 | 53.3333 | 320 | 0.0404 | 0.5822 | 0.8966 | 0.8910 | nan | 0.8742 | 0.9190 | nan | nan | nan | nan | 0.0 | 0.8620 | 0.8845 | nan | nan | nan | nan |
84
+ | 0.0241 | 56.6667 | 340 | 0.0407 | 0.5848 | 0.9011 | 0.8969 | nan | 0.8839 | 0.9184 | nan | nan | nan | nan | 0.0 | 0.8700 | 0.8844 | nan | nan | nan | nan |
85
+ | 0.0527 | 60.0 | 360 | 0.0404 | 0.5806 | 0.8934 | 0.8890 | nan | 0.8756 | 0.9112 | nan | nan | nan | nan | 0.0 | 0.8624 | 0.8795 | nan | nan | nan | nan |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.42.4
91
+ - Pytorch 2.3.1+cu121
92
+ - Datasets 2.21.0
93
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b2",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 6,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "no-label",
32
+ "1": "object1",
33
+ "2": "object2",
34
+ "3": "object3",
35
+ "4": "object4",
36
+ "5": "object5",
37
+ "6": "object6"
38
+ },
39
+ "image_size": 224,
40
+ "initializer_range": 0.02,
41
+ "label2id": {
42
+ "no-label": 0,
43
+ "object1": 1,
44
+ "object2": 2,
45
+ "object3": 3,
46
+ "object4": 4,
47
+ "object5": 5,
48
+ "object6": 6
49
+ },
50
+ "layer_norm_eps": 1e-06,
51
+ "mlp_ratios": [
52
+ 4,
53
+ 4,
54
+ 4,
55
+ 4
56
+ ],
57
+ "model_type": "segformer",
58
+ "num_attention_heads": [
59
+ 1,
60
+ 2,
61
+ 5,
62
+ 8
63
+ ],
64
+ "num_channels": 3,
65
+ "num_encoder_blocks": 4,
66
+ "patch_sizes": [
67
+ 7,
68
+ 3,
69
+ 3,
70
+ 3
71
+ ],
72
+ "reshape_last_stage": true,
73
+ "semantic_loss_ignore_index": 255,
74
+ "sr_ratios": [
75
+ 8,
76
+ 4,
77
+ 2,
78
+ 1
79
+ ],
80
+ "strides": [
81
+ 4,
82
+ 2,
83
+ 2,
84
+ 2
85
+ ],
86
+ "torch_dtype": "float32",
87
+ "transformers_version": "4.42.4"
88
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464f01e76e8cbbd09eccbe545b81f455bc6ca2d635e4bf38e8f1030d85d8c454
3
+ size 109459396
runs/Aug19_09-03-21_b894adace5b7/events.out.tfevents.1724058210.b894adace5b7.691.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8de69fd63d7f0232d579b4b2b6ac0b07c3f89a1ee8560f5defe9926913c7027
3
+ size 131939
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c30277d6ae70ecd863ca170482bd8323f705978abda2a4ddca2ba96c17d22502
3
+ size 5240