--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: TCFD-BERT results: [] --- Using the ClimateBERT-f model as starting point,the TCFD-BERT language model is additionally pre-trained to include precise paragraphs related to climate change. # TCFD-BERT It achieves the following results on the evaluation set: - Loss: 1.1325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.865 | 0.37 | 500 | 1.4460 | | 1.6601 | 0.73 | 1000 | 1.3491 | | 1.593 | 1.1 | 1500 | 1.3190 | | 1.5336 | 1.46 | 2000 | 1.2801 | | 1.5081 | 1.83 | 2500 | 1.2446 | | 1.4547 | 2.19 | 3000 | 1.2281 | | 1.4358 | 2.56 | 3500 | 1.2065 | | 1.4121 | 2.92 | 4000 | 1.1874 | | 1.396 | 3.29 | 4500 | 1.1817 | | 1.383 | 3.65 | 5000 | 1.1747 | | 1.3662 | 4.02 | 5500 | 1.1717 | | 1.3545 | 4.38 | 6000 | 1.1567 | | 1.3441 | 4.75 | 6500 | 1.1325 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1