import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from internvl2_patches import InternVLChatModel import config # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = config.path model = InternVLChatModel.from_pretrained( path, torch_dtype=config.dtype, # low_cpu_mem_usage=True, use_flash_attn=True, ignore_mismatched_sizes=True, revision='7f49802f5bf1e6e3d20b6f69268701c7eb67e037').to(config.device) tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVL2-4B', trust_remote_code=True, use_fast=False, revision='7f49802f5bf1e6e3d20b6f69268701c7eb67e037') tokenizer.padding_side = 'left' img_context_token_id = tokenizer.convert_tokens_to_ids('') model.img_context_token_id = img_context_token_id model.mlp1 = model.mlp1.to(torch.float32) # model.vision_model.encoder = model.vision_model.encoder.to(torch.float32) print(model.mlp1,) params = list(model.mlp1.parameters())# + list(model.vision_model.encoder.parameters()) print(f'Training: {params}') # we will drop all but last patch & train mlp1; mlp1 will be where we do vector arythmetic and probes. optimizer = torch.optim.AdamW(params, lr=config.lr) IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images # TODO can make a batch process within data pipeline def load_image(image_file, pil_image=None, input_size=224, max_num=12): if not pil_image: pil_image = Image.open(image_file) image = pil_image.convert('RGB') transform = build_transform(input_size=input_size) # images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in [image]] pixel_values = torch.stack(pixel_values) return pixel_values