File size: 9,869 Bytes
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, \
    MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter
import torch.nn.functional as F
import torch
from collections import namedtuple
import math
import pdb


##################################  Original Arcface Model #############################################################

class Flatten(Module):
    def forward(self, input):
        return input.view(input.size(0), -1)


def l2_norm(input, axis=1):
    norm = torch.norm(input, 2, axis, True)
    output = torch.div(input, norm)
    return output


class SEModule(Module):
    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.fc1 = Conv2d(
            channels, channels // reduction, kernel_size=1, padding=0, bias=False)
        self.relu = ReLU(inplace=True)
        self.fc2 = Conv2d(
            channels // reduction, channels, kernel_size=1, padding=0, bias=False)
        self.sigmoid = Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


# i = 0

class bottleneck_IR(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth))
        i = 0

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        # print(shortcut.shape)
        # print('---s---')
        res = self.res_layer(x)
        # print(res.shape)
        # print('---r---')
        # i = i + 50
        # print(i)
        # print('50')
        return res + shortcut


class bottleneck_IR_SE(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth),
            SEModule(depth, 16)
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
    '''A named tuple describing a ResNet block.'''
    # print('50')


def get_block(in_channel, depth, num_units, stride=2):
    return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]


def get_blocks(num_layers):
    if num_layers == 50:
        blocks1 = [
            get_block(in_channel=64, depth=64, num_units=3),
            # get_block(in_channel=64, depth=128, num_units=4),
            # get_block(in_channel=128, depth=256, num_units=14),
            # get_block(in_channel=256, depth=512, num_units=3)
        ]
        blocks2 = [
            # get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=4),
            # get_block(in_channel=128, depth=256, num_units=14),
            # get_block(in_channel=256, depth=512, num_units=3)
        ]
        blocks3 = [
            # get_block(in_channel=64, depth=64, num_units=3),
            # get_block(in_channel=64, depth=128, num_units=4),
            get_block(in_channel=128, depth=256, num_units=14),
            # get_block(in_channel=256, depth=512, num_units=3)
        ]

    elif num_layers == 100:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=13),
            get_block(in_channel=128, depth=256, num_units=30),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 152:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=8),
            get_block(in_channel=128, depth=256, num_units=36),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    return blocks1, blocks2, blocks3


class Backbone(Module):
    def __init__(self, num_layers, drop_ratio, mode='ir'):
        super(Backbone, self).__init__()
        # assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks1, blocks2, blocks3 = get_blocks(num_layers)
        # blocks2 = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        self.output_layer = Sequential(BatchNorm2d(512),
                                       Dropout(drop_ratio),
                                       Flatten(),
                                       Linear(512 * 7 * 7, 512),
                                       BatchNorm1d(512))
        modules1 = []
        for block in blocks1:
            for bottleneck in block:
                modules1.append(
                    unit_module(bottleneck.in_channel,
                                bottleneck.depth,
                                bottleneck.stride))

        modules2 = []
        for block in blocks2:
            for bottleneck in block:
                modules2.append(
                    unit_module(bottleneck.in_channel,
                                bottleneck.depth,
                                bottleneck.stride))

        modules3 = []
        for block in blocks3:
            for bottleneck in block:
                modules3.append(
                    unit_module(bottleneck.in_channel,
                                bottleneck.depth,
                                bottleneck.stride))
        # modules4 = []
        # for block in blocks4:
        #     for bottleneck in block:
        #         modules4.append(
        #             unit_module(bottleneck.in_channel,
        #                         bottleneck.depth,
        #                         bottleneck.stride))
        self.body1 = Sequential(*modules1)
        self.body2 = Sequential(*modules2)
        self.body3 = Sequential(*modules3)
        # self.body4 = Sequential(*modules4)

    def forward(self, x):
        x = F.interpolate(x, size=112)
        x = self.input_layer(x)
        x1 = self.body1(x)
        x2 = self.body2(x1)
        x3 = self.body3(x2)

        # x = self.output_layer(x)
        # return l2_norm(x)

        return x1, x2, x3

def load_pretrained_weights(model, checkpoint):
    import collections
    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    else:
        state_dict = checkpoint
    model_dict = model.state_dict()
    new_state_dict = collections.OrderedDict()
    matched_layers, discarded_layers = [], []
    for i, (k, v) in enumerate(state_dict.items()):
        # print(i)

        # If the pretrained state_dict was saved as nn.DataParallel,
        # keys would contain "module.", which should be ignored.
        if k.startswith('module.'):
            k = k[7:]
        if k in model_dict and model_dict[k].size() == v.size():

            new_state_dict[k] = v
            matched_layers.append(k)
        else:
            # print(k)
            discarded_layers.append(k)
    # new_state_dict.requires_grad = False
    model_dict.update(new_state_dict)
    model.load_state_dict(model_dict)
    print('load_weight', len(matched_layers))
    return model

# model = Backbone(50, 0.0, 'ir')
# ir_checkpoint = torch.load(r'C:\Users\86187\Desktop\project\mixfacial\models\pretrain\new_ir50.pth')
# print('hello')
# i1, i2, i3 = 0, 0, 0
# ir_checkpoint = torch.load(r'C:\Users\86187\Desktop\project\mixfacial\models\pretrain\ir50.pth', map_location=lambda storage, loc: storage)
# for (k1, v1), (k2, v2) in zip(model.state_dict().items(), ir_checkpoint.items()):
#     print(f'k1:{k1}, k2:{k2}')
#     model.state_dict()[k1] = v2

# torch.save(model.state_dict(), r'C:\Users\86187\Desktop\project\mixfacial\models\pretrain\new_ir50.pth')
#     print(k)
#     if k.startswith('body1'):
#         i1+=1
#     if k.startswith('body2'):
#         i2+=1
#     if k.startswith('body3'):
#         i3+=1
# print(f'i1:{i1}, i2:{i2}, i3:{i3}')

# print('-'*100)
# ir_checkpoint = torch.load(r'C:\Users\86187\Desktop\project\mixfacial\models\pretrain\ir50.pth', map_location=lambda storage, loc: storage)
# le = 0
# for k, v in ir_checkpoint.items():
#     # print(k)
#     if k.startswith('body'):
#         if le < i1:
#             le += 1
#             key = k.split('.')[0] + str(1) + k.split('.')[1:]
#             print(key)
# # ir_checkpoint = ir_checkpoint["model"]
# model = load_pretrained_weights(model, ir_checkpoint)
# img = torch.rand(size=(2,3,224,224))
# out1, out2, out3 = model(img)
# print(out1.shape, out2.shape, out3.shape)