--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-fine-tuned-boolq results: [] --- # bert-fine-tuned-boolq This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0432 - Accuracy: 0.7489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2975 | 1.0 | 2357 | 1.3526 | 0.7401 | | 0.224 | 2.0 | 4714 | 1.5869 | 0.7312 | | 0.2462 | 3.0 | 7071 | 1.6905 | 0.7419 | | 0.1075 | 4.0 | 9428 | 1.8846 | 0.7529 | | 0.0262 | 5.0 | 11785 | 2.0432 | 0.7489 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.13.0 - Datasets 2.18.0 - Tokenizers 0.15.2