--- language: - en - it license: apache-2.0 tags: - text-generation-inference - transformers - ruslanmv - llama - trl - sft --- # Meta-Llama 3.1 8B Text-to-SQL GPTQ Model This repository provides a quantized 8-billion-parameter Meta-Llama model fine-tuned for text-to-SQL tasks. The model is optimized with GPTQ quantization for efficient inference. Below you'll find instructions to load, use, and fine-tune the model. ## Model Details - **Model Size**: 8B - **Quantization**: GPTQ (4-bit) - **Languages Supported**: English, Italian - **Task**: Text-to-SQL generation - **License**: Apache 2.0 ## Installation Requirements Before using the model, ensure that you have the following dependencies installed. We recommend using the same versions to avoid any compatibility issues. ```bash # Install the required PyTorch version with CUDA support (ensure CUDA 12.1 is installed) !pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121 # Install AutoGPTQ for quantized model handling !pip install auto-gptq --no-build-isolation # Install Optimum for model optimization !pip install optimum ``` After installing the dependencies, reset your instance to ensure everything works correctly. ## Loading the Model To load the quantized Meta-Llama 3.1 model and use it for text-to-SQL tasks, use the following Python code: ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM import torch # Define the Alpaca-style prompt template alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: """ # Model directory and tokenizer quantized_model_dir = "meta-llama-8b-quantized-4bit" # Path where quantized model is saved tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir) # Load the quantized model model = AutoGPTQForCausalLM.from_quantized( quantized_model_dir, device_map="auto", # Automatically map the model to the available device (GPU or CPU) torch_dtype=torch.float16, # Ensure FP16 for efficiency use_safetensors=True # If you saved the model using safetensors format, set this to True ) # Set up the text generation pipeline without specifying the device pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer ) # Function to generate SQL query from input text using the Alpaca prompt def generate_sql(input_text): # Format the prompt prompt = alpaca_prompt.format( "Provide the SQL query", input_text ) # Generate the response using the pipeline generated_text = pipeline( prompt, max_length=200, eos_token_id=tokenizer.eos_token_id )[0]["generated_text"] # Clean the output by removing the prompt and any extra newlines cleaned_output = generated_text.replace(prompt, '').strip() return cleaned_output # Example usage italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020" sql_query = generate_sql(italian_input) print(sql_query) ``` ## Example Usage The example script shows how to generate SQL queries from natural language text. Simply provide a request in Italian or English, and the model will generate an appropriate SQL query. Example input: ```python italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020" sql_query = generate_sql(italian_input) print(sql_query) ``` Example output: ```sql SELECT * FROM table1 WHERE anni = 2020; ``` ## Model Tags - **text-generation-inference** - **transformers** - **llama** - **trl** - **sft** ## License This model is released under the [Apache License 2.0](LICENSE).