--- library_name: transformers license: apache-2.0 base_model: WinKawaks/vit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-tiny-patch16-224-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9338235294117647 --- # vit-tiny-patch16-224-finetuned-papsmear This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2121 - Accuracy: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.4005 | 0.9935 | 38 | 1.2214 | 0.5294 | | 0.8877 | 1.9869 | 76 | 1.0727 | 0.6691 | | 0.603 | 2.9804 | 114 | 0.6807 | 0.7574 | | 0.465 | 4.0 | 153 | 0.6485 | 0.7574 | | 0.432 | 4.9935 | 191 | 0.5024 | 0.8015 | | 0.2957 | 5.9869 | 229 | 0.4485 | 0.8162 | | 0.2203 | 6.9804 | 267 | 0.3850 | 0.8529 | | 0.236 | 8.0 | 306 | 0.3628 | 0.8456 | | 0.1857 | 8.9935 | 344 | 0.2930 | 0.8824 | | 0.1907 | 9.9869 | 382 | 0.2121 | 0.9338 | | 0.1546 | 10.9804 | 420 | 0.2242 | 0.9265 | | 0.1375 | 12.0 | 459 | 0.1918 | 0.9191 | | 0.1237 | 12.9935 | 497 | 0.1809 | 0.9338 | | 0.1637 | 13.9869 | 535 | 0.1774 | 0.9338 | | 0.0803 | 14.9020 | 570 | 0.1882 | 0.9338 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1