--- license: llama3 library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: llama-3-8b-lora-law2entity results: [] datasets: - rubenamtz0/law_entity_recognition --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: rubenamtz0/law_entity_recognition type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./outputs/lora-law hub_model_id: rubenamtz0/llama-3-8b-lora-law2entity sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: entity-relationship-claim-ft wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# llama-3-8b-lora-law2entity This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the rubenamtz0/law_entity_recognition dataset. It achieves the following results on the evaluation set: - Loss: 0.1490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2735 | 0.05 | 1 | 0.2923 | | 0.2852 | 0.25 | 5 | 0.2742 | | 0.2007 | 0.5 | 10 | 0.2015 | | 0.1742 | 0.75 | 15 | 0.1807 | | 0.1854 | 1.0 | 20 | 0.1688 | | 0.159 | 1.1125 | 25 | 0.1630 | | 0.1444 | 1.3625 | 30 | 0.1592 | | 0.1479 | 1.6125 | 35 | 0.1565 | | 0.1505 | 1.8625 | 40 | 0.1538 | | 0.1369 | 2.1125 | 45 | 0.1518 | | 0.1348 | 2.2125 | 50 | 0.1512 | | 0.1287 | 2.4625 | 55 | 0.1510 | | 0.1359 | 2.7125 | 60 | 0.1498 | | 0.1367 | 2.9625 | 65 | 0.1491 | | 0.1218 | 3.075 | 70 | 0.1491 | | 0.1285 | 3.325 | 75 | 0.1493 | | 0.1307 | 3.575 | 80 | 0.1490 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1