--- inference: false language: pt datasets: - assin --- # BERTimbau large for Semantic Textual Similarity This is the [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) model finetuned for Semantic Textual Similarity with the [ASSIN 2](https://huggingface.co/datasets/assin2) dataset. This model is suitable for Portuguese. - Git Repo: [Evaluation of Portuguese Language Models](https://github.com/ruanchaves/eplm). - Demo: [Portuguese Semantic Similarity](https://ruanchaves-portuguese-semantic-similarity.hf.space) ## Full regression example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import numpy as np import torch model_name = "ruanchaves/bert-large-portuguese-cased-assin-similarity" s1 = "A gente faz o aporte financeiro, é como se a empresa fosse parceira do Monte Cristo." s2 = "Fernando Moraes afirma que não tem vínculo com o Monte Cristo além da parceira." model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt") with torch.no_grad(): output = model(**model_input) score = output[0][0].detach().numpy().item() print(f"Similarity Score: {np.round(float(score), 4)}") ``` ## Citation Our research is ongoing, and we are currently working on describing our experiments in a paper, which will be published soon. In the meanwhile, if you would like to cite our work or models before the publication of the paper, please cite our [GitHub repository](https://github.com/ruanchaves/eplm): ``` @software{Chaves_Rodrigues_eplm_2023, author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo}, doi = {10.5281/zenodo.7781848}, month = {3}, title = {{Evaluation of Portuguese Language Models}}, url = {https://github.com/ruanchaves/eplm}, version = {1.0.0}, year = {2023} } ```