--- tags: - spacy - token-classification language: - en model-index: - name: en_parsigs results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8482521186 - name: NER Recall type: recall value: 0.8848066298 - name: NER F Score type: f_score value: 0.8661438615 --- | Feature | Description | | --- | --- | | **Name** | `en_parsigs` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (6 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `Dosage`, `Drug`, `Duration`, `Form`, `Frequency`, `Strength` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 86.61 | | `ENTS_P` | 84.83 | | `ENTS_R` | 88.48 | | `TRANSFORMER_LOSS` | 5347024.15 | | `NER_LOSS` | 3459290.82 |