--- library_name: transformers license: apache-2.0 base_model: anton-l/wav2vec2-base-ft-keyword-spotting tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: wav2vec2-minds14-audio-classification-all results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.09730722154222766 --- # wav2vec2-minds14-audio-classification-all This model is a fine-tuned version of [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6367 - Accuracy: 0.0973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.6374 | 0.9951 | 51 | 2.6375 | 0.0894 | | 2.6347 | 1.9902 | 102 | 2.6334 | 0.0900 | | 2.6352 | 2.9854 | 153 | 2.6323 | 0.0930 | | 2.6282 | 4.0 | 205 | 2.6280 | 0.0924 | | 2.6224 | 4.9951 | 256 | 2.6398 | 0.0894 | | 2.6122 | 5.9902 | 307 | 2.6306 | 0.0912 | | 2.6225 | 6.9854 | 358 | 2.6325 | 0.0906 | | 2.6196 | 8.0 | 410 | 2.6358 | 0.0961 | | 2.6154 | 8.9951 | 461 | 2.6357 | 0.0924 | | 2.6028 | 9.9512 | 510 | 2.6367 | 0.0973 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1