File size: 2,602 Bytes
9cb41c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---

license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-krd-colab-CV16.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: ckb
      split: test
      args: ckb
    metrics:
    - name: Wer
      type: wer
      value: 0.23061901252763448
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-krd-colab-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.2704

- Wer: 0.2306



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Wer    |

|:-------------:|:------:|:----:|:---------------:|:------:|

| 2.283         | 0.7979 | 300  | 0.3271          | 0.3871 |

| 0.2931        | 1.5957 | 600  | 0.2957          | 0.3468 |

| 0.2358        | 2.3936 | 900  | 0.2746          | 0.3299 |

| 0.1842        | 3.1915 | 1200 | 0.2473          | 0.2846 |

| 0.1532        | 3.9894 | 1500 | 0.2257          | 0.2632 |

| 0.1198        | 4.7872 | 1800 | 0.2403          | 0.2600 |

| 0.1027        | 5.5851 | 2100 | 0.2239          | 0.2513 |

| 0.0837        | 6.3830 | 2400 | 0.2310          | 0.2591 |

| 0.0678        | 7.1809 | 2700 | 0.2295          | 0.2402 |

| 0.0527        | 7.9787 | 3000 | 0.2428          | 0.2334 |

| 0.0374        | 8.7766 | 3300 | 0.2448          | 0.2347 |

| 0.0298        | 9.5745 | 3600 | 0.2704          | 0.2306 |





### Framework versions



- Transformers 4.41.2

- Pytorch 2.3.1+cu118

- Datasets 2.19.2

- Tokenizers 0.19.1