--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9258481600176816 - name: Recall type: recall value: 0.9372413021590782 - name: F1 type: f1 value: 0.9315098954858795 - name: Accuracy type: accuracy value: 0.983668800737128 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9258 - Recall: 0.9372 - F1: 0.9315 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2412 | 1.0 | 878 | 0.0686 | 0.9041 | 0.9249 | 0.9144 | 0.9803 | | 0.0519 | 2.0 | 1756 | 0.0596 | 0.9236 | 0.9339 | 0.9287 | 0.9831 | | 0.0298 | 3.0 | 2634 | 0.0606 | 0.9258 | 0.9372 | 0.9315 | 0.9837 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1 - Datasets 2.18.0 - Tokenizers 0.20.0