--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: Training results: [] --- # Training This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1474 - Precision: 0.9421 - Recall: 0.8978 - F1: 0.9194 - Roc Auc: 0.9859 - Krippendorff Alpha: 0.8754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Roc Auc | Krippendorff Alpha | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:-------:|:------------------:| | 0.3425 | 1.0 | 247 | 0.3340 | 0.8489 | 0.7859 | 0.8162 | 0.9439 | 0.7187 | | 0.2554 | 2.0 | 494 | 0.2263 | 0.8225 | 0.9183 | 0.8678 | 0.9651 | 0.7865 | | 0.2351 | 3.0 | 741 | 0.1885 | 0.9087 | 0.8789 | 0.8936 | 0.9765 | 0.8352 | | 0.1724 | 4.0 | 988 | 0.1892 | 0.9124 | 0.8798 | 0.8958 | 0.9773 | 0.8388 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1